skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Treatment Planning System Calculation Errors Are Present in Most Imaging and Radiation Oncology Core-Houston Phantom Failures

Journal Article · · International Journal of Radiation Oncology, Biology and Physics
 [1];  [2];  [1];  [1];  [1]
  1. Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)
  2. Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

Purpose: The anthropomorphic phantom program at the Houston branch of the Imaging and Radiation Oncology Core (IROC-Houston) is an end-to-end test that can be used to determine whether an institution can accurately model, calculate, and deliver an intensity modulated radiation therapy dose distribution. Currently, institutions that do not meet IROC-Houston's criteria have no specific information with which to identify and correct problems. In the present study, an independent recalculation system was developed to identify treatment planning system (TPS) calculation errors. Methods and Materials: A recalculation system was commissioned and customized using IROC-Houston measurement reference dosimetry data for common linear accelerator classes. Using this system, 259 head and neck phantom irradiations were recalculated. Both the recalculation and the institution's TPS calculation were compared with the delivered dose that was measured. In cases in which the recalculation was statistically more accurate by 2% on average or 3% at a single measurement location than was the institution's TPS, the irradiation was flagged as having a “considerable” institutional calculation error. The error rates were also examined according to the linear accelerator vendor and delivery technique. Results: Surprisingly, on average, the reference recalculation system had better accuracy than the institution's TPS. Considerable TPS errors were found in 17% (n=45) of the head and neck irradiations. Also, 68% (n=13) of the irradiations that failed to meet the IROC-Houston criteria were found to have calculation errors. Conclusions: Nearly 1 in 5 institutions were found to have TPS errors in their intensity modulated radiation therapy calculations, highlighting the need for careful beam modeling and calculation in the TPS. An independent recalculation system can help identify the presence of TPS errors and pass on the knowledge to the institution.

OSTI ID:
22723004
Journal Information:
International Journal of Radiation Oncology, Biology and Physics, Vol. 98, Issue 5; Other Information: Copyright (c) 2017 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0360-3016
Country of Publication:
United States
Language:
English