skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: HSP90 and pCREB alterations are linked to mancozeb-dependent behavioral and neurodegenerative effects in a marine teleost

Journal Article · · Toxicology and Applied Pharmacology
 [1]; ;  [2]; ;  [3];  [1]
  1. Comparative Neuroanatomy Laboratory, Biology, Ecology and Earth Science Department (DiBEST), University of Calabria, Arcavacata of Rende, 87036, CS (Italy)
  2. Department of Biology, Section of Evolutionary and Comparative Biology, University of Naples Federico II, 80134 Naples (Italy)
  3. Department of Chemistry and Chemical Technologies (DCTC), University of Calabria, Arcavacata of Rende, 87036, CS (Italy)

The pesticide mancozeb (mz) is recognized as a potent inducer of oxidative stress due to its ability to catalyze the production of reactive oxygen species plus inhibiting mitochondrial respiration thus becoming an environmental risk for neurodegenerative diseases. Despite numerous toxicological studies on mz have been directed to mammals, attention on marine fish is still lacking. Thus, it was our intention to evaluate neurobehavioral activities of ornate wrasses (Thalassoma pavo) exposed to 0.2 mg/l of mz after a preliminary screening test (0.07–0.3 mg/l). Treated fish exhibited an evident (p < 0.001) latency to reach T-maze arms (> 1000%) while exploratory attitudes (total arm entries) diminished (− 50%; p < 0.05) versus controls during spontaneous exploration tests. Moreover, they showed evident enhancements (+ 111%) of immobility in the cylinder test. Contextually, strong (− 88%; p < 0.01) reductions of permanence in light zone of the Light/Dark apparatus along with diminished crossings (− 65%) were also detected. Conversely, wrasses displayed evident enhancements (160%) of risk assessment consisting of fast entries in the dark side of this apparatus. From a molecular point of view, a notable activation (p < 0.005) of the brain transcription factor pCREB occurred during mz-exposure. Similarly, in situ hybridization supplied increased HSP90 mRNAs in most brain areas such as the lateral part of the dorsal telencephalon (Dl; + 68%) and valvula of the cerebellum (VCe; + 35%) that also revealed evident argyrophilic signals. Overall, these first indications suggest a possible protective role of the early biomarkers pCREB and HSP90 against fish toxicity. - Highlights: • Fish exposed to mancozeb exhibited an evident latency to reach T-maze arms. • Mancozeb caused immobility and reduction of explorative attitudes. • Fish exposed to mancozeb showed anxiogenic performances in the Light/Dark apparatus. • The brain of fish exposed to mancozeb supplied pCREB plus HSP90 mRNA up-regulations. • Some brain areas of fish exposed to mancozeb revealed an evident neurodegeneration.

OSTI ID:
22690974
Journal Information:
Toxicology and Applied Pharmacology, Vol. 323; Other Information: Copyright (c) 2017 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0041-008X
Country of Publication:
United States
Language:
English