skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Sci-Fri PM: Radiation Therapy, Planning, Imaging, and Special Techniques - 03: The Potential Benefit Of Esophageal Sparing During Palliative Radiotherapy For Lung Cancer

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.4961846· OSTI ID:22689371
; ;  [1]
  1. Department of Radiation Oncology, London Health Sciences Centre, Department of Radiation Oncology, London Health Sciences Centre, Department of Radiation Oncology, London Health Sciences Centre (United Kingdom)

Puropose: Palliative radiotherapy is an effective technique to alleviate systems of disease burden in late-stage lung cancer patients. Previous randomized controlled studies demonstrated a survival benefit in patients with good performance status at radiation doses of 35Gy10 or greater but with an increased incidence of esophagitis. The objective of this planning study was to assess the potential impact of esophageal-sparing IMRT (ES-IMRT) compared to the current standard of care using parallel-opposed pair beams (POP). Methods: In this study, 15 patients with lung cancer treated to a dose of 30Gy in 10 fractions between August 2015 and January 2016 were identified. Radiation treatment plans were optimized using ES-IMRT by limiting the max esophagus point dose to 24Gy. Using published Lyman-Kutcher-Burman normal tissue complication probabilities (LKB-NTCP) models, both plans were evaluated for the likelihood of esophagitis (≥ grade 2) and pneumonitis (≥ grade 2). Results: Using ES-IMRT, the median esophageal and lung mean doses reduced from 16 and 8Gy to 7 and 7Gy, respectively. Using the LKB models, the theoretical probability of symptomatic esophagitis and pneumonitis reduced from 13 to 1%, and from 5 to 3%, respectively. The median NTD mean for the GTV and PTV of the clinically approved POP plans compared to the ES-IMRT plans were similar. Conclusions: Advanced radiotherapy techniques such as ES-IMRT may have clinical utility in reducing treatment-related toxicity in advanced lung cancer patients. Our data suggests that the rate of esophagitis can be reduced without compromising tumour control.

OSTI ID:
22689371
Journal Information:
Medical Physics, Vol. 43, Issue 8; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English

Similar Records

Predictors of High-grade Esophagitis After Definitive Three-dimensional Conformal Therapy, Intensity-modulated Radiation Therapy, or Proton Beam Therapy for Non-small cell Lung Cancer
Journal Article · Thu Nov 15 00:00:00 EST 2012 · International Journal of Radiation Oncology, Biology and Physics · OSTI ID:22689371

Incorporating Single-nucleotide Polymorphisms Into the Lyman Model to Improve Prediction of Radiation Pneumonitis
Journal Article · Tue Jan 01 00:00:00 EST 2013 · International Journal of Radiation Oncology, Biology and Physics · OSTI ID:22689371

Lung Size and the Risk of Radiation Pneumonitis
Journal Article · Mon Feb 01 00:00:00 EST 2016 · International Journal of Radiation Oncology, Biology and Physics · OSTI ID:22689371