skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Developmental exposure to 50 parts-per-billion arsenic influences histone modifications and associated epigenetic machinery in a region- and sex-specific manner in the adult mouse brain

Abstract

Epidemiological studies report that arsenic exposure via drinking water adversely impacts cognitive development in children and, in adults, can lead to greater psychiatric disease susceptibility, among other conditions. While it is known that arsenic toxicity has a profound effect on the epigenetic landscape, very few studies have investigated its effects on chromatin architecture in the brain. We have previously demonstrated that exposure to a low level of arsenic (50 ppb) during all three trimesters of fetal/neonatal development induces deficits in adult hippocampal neurogenesis in the dentate gyrus (DG), depressive-like symptoms, and alterations in gene expression in the adult mouse brain. As epigenetic processes control these outcomes, here we assess the impact of our developmental arsenic exposure (DAE) paradigm on global histone posttranslational modifications and associated chromatin-modifying proteins in the dentate gyrus and frontal cortex (FC) of adult male and female mice. DAE influenced histone 3 K4 trimethylation with increased levels in the male DG and FC and decreased levels in the female DG (no change in female FC). The histone methyltransferase MLL exhibited a similar sex- and region-specific expression profile as H3K4me3 levels, while histone demethylase KDM5B expression trended in the opposite direction. DAE increased histone 3 K9 acetylation levelsmore » in the male DG along with histone acetyltransferase (HAT) expression of GCN5 and decreased H3K9ac levels in the male FC along with decreased HAT expression of GCN5 and PCAF. DAE decreased expression of histone deacetylase enzymes HDAC1 and HDAC2, which were concurrent with increased H3K9ac levels but only in the female DG. Levels of H3 and H3K9me3 were not influenced by DAE in either brain region of either sex. These findings suggest that exposure to a low, environmentally relevant level of arsenic during development leads to long-lasting changes in histone methylation and acetylation in the adult brain due to aberrant expression of epigenetic machinery based on region and sex. - Highlights: • Brain tissue from adult mice with developmental arsenic exposure (DAE) was used. • DAE impacted histone methylation and associated methyltransferases based on sex. • DAE differentially altered histone acetylation based on brain region. • DAE altered HATs in males and HDACs in females. • Epigenetic modifier expression correlated with the associated histone modification.« less

Authors:
; ; ;
Publication Date:
OSTI Identifier:
22687765
Resource Type:
Journal Article
Journal Name:
Toxicology and Applied Pharmacology
Additional Journal Information:
Journal Volume: 288; Journal Issue: 1; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); Journal ID: ISSN 0041-008X
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ACETYLATION; ARSENIC; BRAIN; CHROMATIN; DRINKING WATER; HISTONES; METHYL TRANSFERASES; METHYLATION; MICE; MODIFICATIONS

Citation Formats

Tyler, Christina R., Hafez, Alexander K., Solomon, Elizabeth R., and Allan, Andrea M., E-mail: aallan@salud.unm.edu. Developmental exposure to 50 parts-per-billion arsenic influences histone modifications and associated epigenetic machinery in a region- and sex-specific manner in the adult mouse brain. United States: N. p., 2015. Web. doi:10.1016/J.TAAP.2015.07.013.
Tyler, Christina R., Hafez, Alexander K., Solomon, Elizabeth R., & Allan, Andrea M., E-mail: aallan@salud.unm.edu. Developmental exposure to 50 parts-per-billion arsenic influences histone modifications and associated epigenetic machinery in a region- and sex-specific manner in the adult mouse brain. United States. doi:10.1016/J.TAAP.2015.07.013.
Tyler, Christina R., Hafez, Alexander K., Solomon, Elizabeth R., and Allan, Andrea M., E-mail: aallan@salud.unm.edu. Thu . "Developmental exposure to 50 parts-per-billion arsenic influences histone modifications and associated epigenetic machinery in a region- and sex-specific manner in the adult mouse brain". United States. doi:10.1016/J.TAAP.2015.07.013.
@article{osti_22687765,
title = {Developmental exposure to 50 parts-per-billion arsenic influences histone modifications and associated epigenetic machinery in a region- and sex-specific manner in the adult mouse brain},
author = {Tyler, Christina R. and Hafez, Alexander K. and Solomon, Elizabeth R. and Allan, Andrea M., E-mail: aallan@salud.unm.edu},
abstractNote = {Epidemiological studies report that arsenic exposure via drinking water adversely impacts cognitive development in children and, in adults, can lead to greater psychiatric disease susceptibility, among other conditions. While it is known that arsenic toxicity has a profound effect on the epigenetic landscape, very few studies have investigated its effects on chromatin architecture in the brain. We have previously demonstrated that exposure to a low level of arsenic (50 ppb) during all three trimesters of fetal/neonatal development induces deficits in adult hippocampal neurogenesis in the dentate gyrus (DG), depressive-like symptoms, and alterations in gene expression in the adult mouse brain. As epigenetic processes control these outcomes, here we assess the impact of our developmental arsenic exposure (DAE) paradigm on global histone posttranslational modifications and associated chromatin-modifying proteins in the dentate gyrus and frontal cortex (FC) of adult male and female mice. DAE influenced histone 3 K4 trimethylation with increased levels in the male DG and FC and decreased levels in the female DG (no change in female FC). The histone methyltransferase MLL exhibited a similar sex- and region-specific expression profile as H3K4me3 levels, while histone demethylase KDM5B expression trended in the opposite direction. DAE increased histone 3 K9 acetylation levels in the male DG along with histone acetyltransferase (HAT) expression of GCN5 and decreased H3K9ac levels in the male FC along with decreased HAT expression of GCN5 and PCAF. DAE decreased expression of histone deacetylase enzymes HDAC1 and HDAC2, which were concurrent with increased H3K9ac levels but only in the female DG. Levels of H3 and H3K9me3 were not influenced by DAE in either brain region of either sex. These findings suggest that exposure to a low, environmentally relevant level of arsenic during development leads to long-lasting changes in histone methylation and acetylation in the adult brain due to aberrant expression of epigenetic machinery based on region and sex. - Highlights: • Brain tissue from adult mice with developmental arsenic exposure (DAE) was used. • DAE impacted histone methylation and associated methyltransferases based on sex. • DAE differentially altered histone acetylation based on brain region. • DAE altered HATs in males and HDACs in females. • Epigenetic modifier expression correlated with the associated histone modification.},
doi = {10.1016/J.TAAP.2015.07.013},
journal = {Toxicology and Applied Pharmacology},
issn = {0041-008X},
number = 1,
volume = 288,
place = {United States},
year = {2015},
month = {10}
}