skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: On the impact of large angle CMB polarization data on cosmological parameters

Abstract

We study the impact of the large-angle CMB polarization datasets publicly released by the WMAP and Planck satellites on the estimation of cosmological parameters of the ΛCDM model. To complement large-angle polarization, we consider the high resolution (or 'high-ℓ') CMB datasets from either WMAP or Planck as well as CMB lensing as traced by Planck 's measured four point correlation function. In the case of WMAP, we compute the large-angle polarization likelihood starting over from low resolution frequency maps and their covariance matrices, and perform our own foreground mitigation technique, which includes as a possible alternative Planck 353 GHz data to trace polarized dust. We find that the latter choice induces a downward shift in the optical depth τ, roughly of order 2σ, robust to the choice of the complementary high resolution dataset. When the Planck 353 GHz is consistently used to minimize polarized dust emission, WMAP and Planck 70 GHz large-angle polarization data are in remarkable agreement: by combining them we find τ = 0.066 {sup +0.012}{sub −0.013}, again very stable against the particular choice for high-ℓ data. We find that the amplitude of primordial fluctuations A {sub s} , notoriously degenerate with τ, is the parameter second mostmore » affected by the assumptions on polarized dust removal, but the other parameters are also affected, typically between 0.5 and 1σ. In particular, cleaning dust with Planck 's 353 GHz data imposes a 1σ downward shift in the value of the Hubble constant H {sub 0}, significantly contributing to the tension reported between CMB based and direct measurements of the present expansion rate. On the other hand, we find that the appearance of the so-called low ℓ anomaly, a well-known tension between the high- and low-resolution CMB anisotropy amplitude, is not significantly affected by the details of large-angle polarization, or by the particular high-ℓ dataset employed.« less

Authors:
; ;  [1]; ; ;  [2];  [3];  [4];  [5]
  1. Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via Giuseppe Saragat 1, I-44122 Ferrara (Italy)
  2. Istituto Nazionale di Astrofisica, Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna, Via Piero Gobetti 101, I-40129 Bologna (Italy)
  3. The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden)
  4. Agenzia Spaziale Italiana Science Data Center, Via del Politecnico snc, 00133, Roma (Italy)
  5. Dipartimento di Fisica, Università La Sapienza, Piazzale Aldo Moro 2, I-00185 Roma (Italy)
Publication Date:
OSTI Identifier:
22680013
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Cosmology and Astroparticle Physics; Journal Volume: 2017; Journal Issue: 02; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; AMPLITUDES; ANISOTROPY; CORRELATION FUNCTIONS; CORRELATIONS; COSMIC DUST; DATASETS; EMISSION; EXPANSION; FLUCTUATIONS; GRAVITATIONAL LENSES; POLARIZATION; RELICT RADIATION; RESOLUTION; SATELLITES; SIMULATION

Citation Formats

Lattanzi, Massimiliano, Mandolesi, Nazzareno, Natoli, Paolo, Burigana, Carlo, Gruppuso, Alessandro, Trombetti, Tiziana, Gerbino, Martina, Polenta, Gianluca, and Salvati, Laura, E-mail: lattanzi@fe.infn.it, E-mail: burigana@iasfbo.inaf.it, E-mail: martina.gerbino@fysik.su.se, E-mail: gruppuso@iasfbo.inaf.it, E-mail: nazzareno.mandolesi@unife.it, E-mail: paolo.natoli@unife.it, E-mail: gianluca.polenta@asdc.asi.it, E-mail: laura.salvati@ias.u-psud.fr, E-mail: trombetti@iasfbo.inaf.it. On the impact of large angle CMB polarization data on cosmological parameters. United States: N. p., 2017. Web. doi:10.1088/1475-7516/2017/02/041.
Lattanzi, Massimiliano, Mandolesi, Nazzareno, Natoli, Paolo, Burigana, Carlo, Gruppuso, Alessandro, Trombetti, Tiziana, Gerbino, Martina, Polenta, Gianluca, & Salvati, Laura, E-mail: lattanzi@fe.infn.it, E-mail: burigana@iasfbo.inaf.it, E-mail: martina.gerbino@fysik.su.se, E-mail: gruppuso@iasfbo.inaf.it, E-mail: nazzareno.mandolesi@unife.it, E-mail: paolo.natoli@unife.it, E-mail: gianluca.polenta@asdc.asi.it, E-mail: laura.salvati@ias.u-psud.fr, E-mail: trombetti@iasfbo.inaf.it. On the impact of large angle CMB polarization data on cosmological parameters. United States. doi:10.1088/1475-7516/2017/02/041.
Lattanzi, Massimiliano, Mandolesi, Nazzareno, Natoli, Paolo, Burigana, Carlo, Gruppuso, Alessandro, Trombetti, Tiziana, Gerbino, Martina, Polenta, Gianluca, and Salvati, Laura, E-mail: lattanzi@fe.infn.it, E-mail: burigana@iasfbo.inaf.it, E-mail: martina.gerbino@fysik.su.se, E-mail: gruppuso@iasfbo.inaf.it, E-mail: nazzareno.mandolesi@unife.it, E-mail: paolo.natoli@unife.it, E-mail: gianluca.polenta@asdc.asi.it, E-mail: laura.salvati@ias.u-psud.fr, E-mail: trombetti@iasfbo.inaf.it. Wed . "On the impact of large angle CMB polarization data on cosmological parameters". United States. doi:10.1088/1475-7516/2017/02/041.
@article{osti_22680013,
title = {On the impact of large angle CMB polarization data on cosmological parameters},
author = {Lattanzi, Massimiliano and Mandolesi, Nazzareno and Natoli, Paolo and Burigana, Carlo and Gruppuso, Alessandro and Trombetti, Tiziana and Gerbino, Martina and Polenta, Gianluca and Salvati, Laura, E-mail: lattanzi@fe.infn.it, E-mail: burigana@iasfbo.inaf.it, E-mail: martina.gerbino@fysik.su.se, E-mail: gruppuso@iasfbo.inaf.it, E-mail: nazzareno.mandolesi@unife.it, E-mail: paolo.natoli@unife.it, E-mail: gianluca.polenta@asdc.asi.it, E-mail: laura.salvati@ias.u-psud.fr, E-mail: trombetti@iasfbo.inaf.it},
abstractNote = {We study the impact of the large-angle CMB polarization datasets publicly released by the WMAP and Planck satellites on the estimation of cosmological parameters of the ΛCDM model. To complement large-angle polarization, we consider the high resolution (or 'high-ℓ') CMB datasets from either WMAP or Planck as well as CMB lensing as traced by Planck 's measured four point correlation function. In the case of WMAP, we compute the large-angle polarization likelihood starting over from low resolution frequency maps and their covariance matrices, and perform our own foreground mitigation technique, which includes as a possible alternative Planck 353 GHz data to trace polarized dust. We find that the latter choice induces a downward shift in the optical depth τ, roughly of order 2σ, robust to the choice of the complementary high resolution dataset. When the Planck 353 GHz is consistently used to minimize polarized dust emission, WMAP and Planck 70 GHz large-angle polarization data are in remarkable agreement: by combining them we find τ = 0.066 {sup +0.012}{sub −0.013}, again very stable against the particular choice for high-ℓ data. We find that the amplitude of primordial fluctuations A {sub s} , notoriously degenerate with τ, is the parameter second most affected by the assumptions on polarized dust removal, but the other parameters are also affected, typically between 0.5 and 1σ. In particular, cleaning dust with Planck 's 353 GHz data imposes a 1σ downward shift in the value of the Hubble constant H {sub 0}, significantly contributing to the tension reported between CMB based and direct measurements of the present expansion rate. On the other hand, we find that the appearance of the so-called low ℓ anomaly, a well-known tension between the high- and low-resolution CMB anisotropy amplitude, is not significantly affected by the details of large-angle polarization, or by the particular high-ℓ dataset employed.},
doi = {10.1088/1475-7516/2017/02/041},
journal = {Journal of Cosmology and Astroparticle Physics},
number = 02,
volume = 2017,
place = {United States},
year = {Wed Feb 01 00:00:00 EST 2017},
month = {Wed Feb 01 00:00:00 EST 2017}
}
  • In this paper, we present a parameter estimation analysis of the polarization and temperature power spectra from the second and third season of observations with the QUaD experiment. QUaD has for the first time detected multiple acoustic peaks in the E-mode polarization spectrum with high significance. Although QUaD-only parameter constraints are not competitive with previous results for the standard six-parameter {lambda}CDM cosmology, they do allow meaningful polarization-only parameter analyses for the first time. In a standard six-parameter {lambda}CDM analysis, we find the QUaD TT power spectrum to be in good agreement with previous results. However, the QUaD polarization data showmore » some tension with {lambda}CDM. The origin of this 1{sigma}-2{sigma} tension remains unclear, and may point to new physics, residual systematics, or simple random chance. We also combine QUaD with the five-year WMAP data set and the SDSS luminous red galaxies 4th data release power spectrum, and extend our analysis to constrain individual isocurvature mode fractions, constraining cold dark matter density, {alpha}{sub cdmi} < 0.11 (95% confidence limit (CL)), neutrino density, {alpha}{sub ndi} < 0.26 (95% CL), and neutrino velocity, {alpha}{sub nvi} < 0.23 (95% CL), modes. Our analysis sets a benchmark for future polarization experiments.« less
  • Observations of the 21 cm line radiation coming from the epoch of reionization have a great capacity to study the cosmological growth of the Universe. Besides, CMB polarization produced by gravitational lensing has a large amount of information about the growth of matter fluctuations at late time. In this paper, we investigate their sensitivities to the impact of neutrino property on the growth of density fluctuations, such as the total neutrino mass, the effective number of neutrino species (extra radiation), and the neutrino mass hierarchy. We show that by combining a precise CMB polarization observation such as Simons Array withmore » a 21 cm line observation such as Square kilometer Array (SKA) phase 1 and a baryon acoustic oscillation observation (Dark Energy Spectroscopic Instrument:DESI) we can measure effects of non-zero neutrino mass on the growth of density fluctuation if the total neutrino mass is larger than 0.1 eV. Additionally, the combinations can strongly improve errors of the bounds on the effective number of neutrino species σ (N{sub ν}) ∼ 0.06−0.09 at 95 % C.L.. Finally, by using SKA phase 2, we can determine the neutrino mass hierarchy at 95 % C.L. if the total neutrino mass is similar to or smaller than 0.1 eV.« less
  • The faint radio point sources that are unresolved in cosmic microwave background (CMB) anisotropy maps are likely to be a biased tracer of the large-scale structure dark matter distribution. While the shot-noise contribution to the angular power spectrum of unresolved radio point sources is included either when optimally constructing the CMB angular power spectrum, as with WMAP data, or when extracting cosmological parameters, we suggest that clustering part of the point source power spectrum should also be included. This is especially necessary at high frequencies above 150 GHz, where the clustering of far-IR sources is expected to dominate the shot-noisemore » level of the angular power spectrum at tens of arcminute angular scales of both radio and sub-mm sources. We make an estimate of source clustering of unresolved radio sources in both WMAP and ACBAR, and marginalize over the amplitude of source clustering in each CMB data set when model fitting for cosmological parameters. For the combination of WMAP 5-year data and ACBAR, we find that the spectral index changes from the value of 0.963{+-}0.014 to 0.959{+-}0.014 (at 68% C.L.) when the clustering power spectrum of point sources is included in model fits. While we find that the differences are marginal with and without source clustering in current data, it may be necessary to account for source clustering with future data sets such as Planck, especially to properly model fit anisotropies at arcminute angular scales. If clustering is not accounted and point sources are modeled with a shot noise only out to l{approx}2000, the spectral index will be biased by about 1.5{sigma}.« less
  • The standard cosmological model is assumed to respect parity symmetry. Under this assumption the cross correlations of the cosmic microwave background's temperature anisotropy and 'gradient'-like polarization, with the 'curl'-like polarization, identically vanish over the full sky. However, extensions of the standard model which allow for light scalar field or axion coupling to the electromagnetic field, or coupling to the Riemann gravitational field strength, as well as other modifications of field theories, may induce a rotation of the cosmic microwave background polarization plane on cosmological scales and manifest itself as nonvanishing TB and EB cross correlations. Recently, the degree of paritymore » violation (reflected in polarization rotation) was constrained using data from BOOMERANG, WMAP, and QUAD. Forecasts have been made for near-future experiments (e.g. PLANCK) to further constrain parity- and Lorentz-violating terms in the fundamental interactions of nature. Here we consider a real-world effect induced by a class of telescope beam systematics which can mimic the rotation of polarization plane or otherwise induce nonvanishing TB and EB correlations. In particular, adopting the viewpoint that the primary target of future experiments will be the inflationary B-mode signal, we assume the beam systematics of the upcoming PLANCK and POLARBEAR experiments are optimized towards this goal, and explore the implications of the allowed levels of beam systematics on the resulting precision of polarization-rotation measurements.« less
  • Cited by 5