skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Massive Fermi gas in the expanding universe

Abstract

The behavior of a decoupled ideal Fermi gas in a homogeneously expanding three-dimensional volume is investigated, starting from an equilibrium spectrum. In case the gas is massless and/or completely degenerate, the spectrum of the gas can be described by an effective temperature and/or an effective chemical potential, both of which scale down with the volume expansion. In contrast, the spectrum of a decoupled massive and non-degenerate gas can only be described by an effective temperature if there are strong enough self-interactions such as to maintain an equilibrium distribution. Assuming perpetual equilibration, we study a decoupled gas which is relativistic at decoupling and then is red-shifted until it becomes non-relativistic. We find expressions for the effective temperature and effective chemical potential which allow us to calculate the final spectrum for arbitrary initial conditions. This calculation is enabled by a new expansion of the Fermi-Dirac integral, which is for our purpose superior to the well-known Sommerfeld expansion. We also compute the behavior of the phase space density under expansion and compare it to the case of real temperature and real chemical potential. Using our results for the degenerate case, we also obtain the mean relic velocity of the recently proposed non-thermal cosmicmore » neutrino background.« less

Authors:
 [1]
  1. Bethe Center for Theoretical Physics and Physikalisches Institut der Universität Bonn, Nussallee 12, 53115 Bonn (Germany)
Publication Date:
OSTI Identifier:
22679983
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Cosmology and Astroparticle Physics; Journal Volume: 2017; Journal Issue: 03; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; COMPARATIVE EVALUATIONS; COSMIC NEUTRINOS; DECOUPLING; DENSITY; DISTRIBUTION; EQUILIBRIUM; EXPANSION; FERMI GAS; INTERACTIONS; PHASE SPACE; RED SHIFT; RELATIVISTIC RANGE; SPECTRA; THREE-DIMENSIONAL CALCULATIONS; UNIVERSE; VELOCITY

Citation Formats

Trautner, Andreas, E-mail: atrautner@uni-bonn.de. Massive Fermi gas in the expanding universe. United States: N. p., 2017. Web. doi:10.1088/1475-7516/2017/03/019.
Trautner, Andreas, E-mail: atrautner@uni-bonn.de. Massive Fermi gas in the expanding universe. United States. doi:10.1088/1475-7516/2017/03/019.
Trautner, Andreas, E-mail: atrautner@uni-bonn.de. Wed . "Massive Fermi gas in the expanding universe". United States. doi:10.1088/1475-7516/2017/03/019.
@article{osti_22679983,
title = {Massive Fermi gas in the expanding universe},
author = {Trautner, Andreas, E-mail: atrautner@uni-bonn.de},
abstractNote = {The behavior of a decoupled ideal Fermi gas in a homogeneously expanding three-dimensional volume is investigated, starting from an equilibrium spectrum. In case the gas is massless and/or completely degenerate, the spectrum of the gas can be described by an effective temperature and/or an effective chemical potential, both of which scale down with the volume expansion. In contrast, the spectrum of a decoupled massive and non-degenerate gas can only be described by an effective temperature if there are strong enough self-interactions such as to maintain an equilibrium distribution. Assuming perpetual equilibration, we study a decoupled gas which is relativistic at decoupling and then is red-shifted until it becomes non-relativistic. We find expressions for the effective temperature and effective chemical potential which allow us to calculate the final spectrum for arbitrary initial conditions. This calculation is enabled by a new expansion of the Fermi-Dirac integral, which is for our purpose superior to the well-known Sommerfeld expansion. We also compute the behavior of the phase space density under expansion and compare it to the case of real temperature and real chemical potential. Using our results for the degenerate case, we also obtain the mean relic velocity of the recently proposed non-thermal cosmic neutrino background.},
doi = {10.1088/1475-7516/2017/03/019},
journal = {Journal of Cosmology and Astroparticle Physics},
number = 03,
volume = 2017,
place = {United States},
year = {Wed Mar 01 00:00:00 EST 2017},
month = {Wed Mar 01 00:00:00 EST 2017}
}
  • Recent high-redshift surveys for 21 cm absorption in damped Ly{alpha} absorption systems (DLAs) take the number of published searches at z{sub abs} > 2 to 25, the same number as at z{sub abs} < 2, although the detection rate at high redshift remains significantly lower (20% compared to 60%). Using the known properties of the DLAs to estimate the unknown profile widths of the 21 cm non-detections and including the limits via a survival analysis, we show that the mean spin temperature/covering factor degeneracy at high redshift is, on average, double that of the low-redshift sample. This value is significantlymore » lower than the previous factor of eight for the spin temperatures and is about the same factor as in the angular diameter distance ratios between the low- and high-redshift samples. That is, without the need for the several pivotal assumptions, which lead to an evolution in the spin temperature, we show that the observed distribution of 21 cm detections in DLAs can be accounted for by the geometry effects of an expanding universe. That is, as yet there is no evidence of the spin temperature of gas-rich galaxies evolving with redshift.« less
  • The pair correlation function of an expanding gas is investigated with an emphasis on the BEC-BCS crossover of a superfluid Fermi gas at zero temperature. At unitarity quantum Monte Carlo simulations reveal the occurrence of a sizable bunching effect due to interactions in the spin up-down channel which, at short distances, is larger than that exhibited by thermal bosons in the Hanbury-Brown-Twiss effect. We propose a local equilibrium ansatz for the pair correlation function which we predict will remain isotropic during the expansion even if the trapping potential is anisotropic, in contrast with the behavior of the density. The isotropymore » of the pair correlation function is an experimentally accessible signature, which makes a clear distinction with respect to the case of noninteracting gases and can be understood as a consequence of the violation of scaling.« less
  • We consider a possible scenario for the evolution of the early cold Universe born from a fairly large quantum fluctuation in a vacuum with a size a{sub 0} ≫ l{sub P} (where l{sub P} is the Planck length) and filled with both a nonlinear scalar field φ, whose potential energy density U(φ) determines the vacuum energy density λ, and a nonideal Fermi gas with short-range repulsion between particles, whose equation of state is characterized by the ratio of pressure P(n{sub F}) to energy density ε(n{sub F}) dependent on the number density of fermions n{sub F}. As the early Universe expands,more » the dimensionless quantity ν(n{sub F}) = P(n{sub F})/ε(n{sub F}) decreases with decreasing n{sub F} from its maximum value ν{sub max} = 1 for n{sub F} → ∞ to zero for n{sub F} → 0. The interaction of the scalar and gravitational fields, which is characterized by a dimensionless constant ξ, is proportional to the scalar curvature of four-dimensional space R = κ[3P(n{sub F})–ε(n{sub F})–4λ] (where κ is Einstein’s gravitational constant), and contains terms both quadratic and linear in φ. As a result, the expanding early Universe reaches the point of first-order phase transition in a finite time interval at critical values of the scalar curvature R = R{sub c} =–μ{sup 2}/ξ and radius a{sub c} ≫ a{sub 0}. Thereafter, the early closed Universe “rolls down” from the flat inflection point of the potential U(φ) to the zero potential minimum in a finite time. The release of the total potential energy of the scalar field in the entire volume of the expanding Universe as it “rolls down” must be accompanied by the production of a large number of massive particles and antiparticles of various kinds, whose annihilation plays the role of the Big Bang. We also discuss the fundamental nature of Newton’ gravitational constant G{sub N}.« less
  • Expansion of a Universe, which on the average is isotropic, is considered at the stage of applicability of the equation of state p = epsilon /3. A high-frequency expansion of the Einstein equations is carried out under the assumption that the characteristic wavelengths of the metric deviations from an isotropic one are much smaller than the radius of curvature. Averaging of the equations derived over large scales yields the deviation of the Universe expansion from the isotropic Friedman solution which is due to the inverse effect of high-frequency metric perturbations. The dependence of the metric penturbation amplitudes for the highfrequencymore » expansion differs from that obtained on analysis of linear perturbations by a logarithmically slowly varying factor. (auth)« less
  • Current evidence suggests that the cosmological constant is not zero, or that we live in an open universe. We examine the implications for the future under these assumptions, and find that they are striking. If the universe is cosmological constant-dominated, our ability to probe the evolution of large-scale structure will decrease with time; presently observable distant sources will disappear on a timescale comparable to the period of stellar burning. Moreover, while the universe might expand forever, the integrated conscious lifetime of any civilization will be finite, although it can be astronomically long. We argue that this latter result is farmore » more general. In the absence of possible exotic and uncertain strong gravitational effects, the total information recoverable by any civilization over the entire history of our universe is finite. Assuming that consciousness has a physical computational basis, and therefore is ultimately governed by quantum mechanics, life cannot be eternal. (c) 2000 The American Astronomical Society.« less