skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Measuring neutrino mass imprinted on the anisotropic galaxy clustering

Abstract

The anisotropic galaxy clustering of large scale structure observed by the Baryon Oscillation Spectroscopic Survey Data Release 11 is analyzed to probe the sum of neutrino masses in the small m {sub ν} ∼< 1 eV limit in which the early broadband shape determined before the last scattering surface is immune from the variation of m {sub ν}. The signature of m {sub ν} is imprinted on the altered shape of the power spectrum at later epoch, which provides an opportunity to access the non-trivial m {sub ν} through the measured anisotropic correlation function in redshift space (hereafter RSD instead of Redshift Space Distortion). The non-linear RSD corrections with massive neutrinos in the quasi linear regime are approximately estimated using one-loop order terms. We suggest an approach to probe m {sub ν} simultaneously with all other distance measures and coherent growth functions, exploiting this deformation of the early broadband shape of the spectrum at later epoch. If the origin of cosmic acceleration is unknown, m {sub ν} is poorly determined after marginalizing over all other observables. However, we find that the measured distances and coherent growth functions are minimally affected by the presence of mild neutrino mass. Although the standardmore » model of cosmic acceleration is assumed to be the cosmological constant, the constraint on m {sub ν} is little improved. Interestingly, the measured Cosmic Microwave Background (hereafter CMB) distance to the last scattering surface sharply slices the degeneracy between the matter content and m {sub ν}, and the m {sub ν} is observed to be m {sub ν} = 0.19{sup +0.28}{sub −0.17} eV which is different from massless neutrino at 68% confidence.« less

Authors:
;  [1]
  1. Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of)
Publication Date:
OSTI Identifier:
22679922
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Cosmology and Astroparticle Physics; Journal Volume: 2017; Journal Issue: 04; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ACCELERATION; ANISOTROPY; APPROXIMATIONS; BARYONS; CORRECTIONS; CORRELATION FUNCTIONS; CORRELATIONS; COSMOLOGICAL CONSTANT; DEFORMATION; GALAXY CLUSTERS; MASS; NEUTRINOS; NONLINEAR PROBLEMS; OSCILLATIONS; RED SHIFT; RELICT RADIATION; SCATTERING; SPACE; SPECTRA; STANDARD MODEL

Citation Formats

Oh, Minji, and Song, Yong-Seon, E-mail: minjioh@kasi.re.kr, E-mail: ysong@kasi.re.kr. Measuring neutrino mass imprinted on the anisotropic galaxy clustering. United States: N. p., 2017. Web. doi:10.1088/1475-7516/2017/04/020.
Oh, Minji, & Song, Yong-Seon, E-mail: minjioh@kasi.re.kr, E-mail: ysong@kasi.re.kr. Measuring neutrino mass imprinted on the anisotropic galaxy clustering. United States. doi:10.1088/1475-7516/2017/04/020.
Oh, Minji, and Song, Yong-Seon, E-mail: minjioh@kasi.re.kr, E-mail: ysong@kasi.re.kr. Sat . "Measuring neutrino mass imprinted on the anisotropic galaxy clustering". United States. doi:10.1088/1475-7516/2017/04/020.
@article{osti_22679922,
title = {Measuring neutrino mass imprinted on the anisotropic galaxy clustering},
author = {Oh, Minji and Song, Yong-Seon, E-mail: minjioh@kasi.re.kr, E-mail: ysong@kasi.re.kr},
abstractNote = {The anisotropic galaxy clustering of large scale structure observed by the Baryon Oscillation Spectroscopic Survey Data Release 11 is analyzed to probe the sum of neutrino masses in the small m {sub ν} ∼< 1 eV limit in which the early broadband shape determined before the last scattering surface is immune from the variation of m {sub ν}. The signature of m {sub ν} is imprinted on the altered shape of the power spectrum at later epoch, which provides an opportunity to access the non-trivial m {sub ν} through the measured anisotropic correlation function in redshift space (hereafter RSD instead of Redshift Space Distortion). The non-linear RSD corrections with massive neutrinos in the quasi linear regime are approximately estimated using one-loop order terms. We suggest an approach to probe m {sub ν} simultaneously with all other distance measures and coherent growth functions, exploiting this deformation of the early broadband shape of the spectrum at later epoch. If the origin of cosmic acceleration is unknown, m {sub ν} is poorly determined after marginalizing over all other observables. However, we find that the measured distances and coherent growth functions are minimally affected by the presence of mild neutrino mass. Although the standard model of cosmic acceleration is assumed to be the cosmological constant, the constraint on m {sub ν} is little improved. Interestingly, the measured Cosmic Microwave Background (hereafter CMB) distance to the last scattering surface sharply slices the degeneracy between the matter content and m {sub ν}, and the m {sub ν} is observed to be m {sub ν} = 0.19{sup +0.28}{sub −0.17} eV which is different from massless neutrino at 68% confidence.},
doi = {10.1088/1475-7516/2017/04/020},
journal = {Journal of Cosmology and Astroparticle Physics},
number = 04,
volume = 2017,
place = {United States},
year = {Sat Apr 01 00:00:00 EDT 2017},
month = {Sat Apr 01 00:00:00 EDT 2017}
}
  • We study the dependence of quasar clustering on quasar luminosity and black hole mass by measuring the angular overdensity of photometrically selected galaxies imaged by the Wide-field Infrared Survey Explorer (WISE) about z ∼ 0.8 quasars from SDSS. By measuring the quasar–galaxy cross-correlation function and using photometrically selected galaxies, we achieve a higher density of tracer objects and a more sensitive detection of clustering than measurements of the quasar autocorrelation function. We test models of quasar formation and evolution by measuring the luminosity dependence of clustering amplitude. We find a significant overdensity of WISE galaxies about z ∼ 0.8 quasarsmore » at 0.2–6.4 h{sup −1} Mpc in projected comoving separation. We find no appreciable increase in clustering amplitude with quasar luminosity across a decade in luminosity, and a power-law fit between luminosity and clustering amplitude gives an exponent of −0.01 ± 0.06 (1 σ error). We also fail to find a significant relationship between clustering amplitude and black hole mass, although our dynamic range in true mass is suppressed due to the large uncertainties in virial black hole mass estimates. Our results indicate that a small range in host dark matter halo mass maps to a large range in quasar luminosity.« less
  • We present forecast errors on a wide range of cosmological parameters obtained from a photometric cluster catalogue of a future wide-field Euclid-like survey. We focus in particular on the total neutrino mass as constrained by a combination of the galaxy cluster number counts and correlation function. For the latter we consider only the shape information and the Baryon Acoustic Oscillations (BAO), while marginalising over the spectral amplitude and the redshift space distortions. In addition to the cosmological parameters of the standard ΛCDM+ν model we also consider a non-vanishing curvature, and two parameters describing a redshift evolution for the dark energymore » equation of state. For completeness, we also marginalise over a set of ''nuisance'' parameters, representing the uncertainties on the cluster mass determination. We find that combining cluster counts with power spectrum information greatly improves the constraining power of each probe taken individually, with errors on cosmological parameters being reduced by up to an order of magnitude. In particular, the best improvements are for the parameters defining the dynamical evolution of dark energy, where cluster counts break degeneracies. Moreover, the resulting error on neutrino mass is at the level of σ(M{sub ν}) ∼ 0.9 eV, comparable with that derived from present Lyα forest measurements and Cosmic Microwave background (CMB) data in the framework of a non-flat Universe. Further adopting Planck priors and reducing the number of free parameters to a ΛCDM+ν cosmology allows to place constraints on the total neutrino mass of σ(M{sub ν}) ∼ 0.08 eV, close to the lower bound enforced by neutrino oscillation experiments. Finally, in the optimistic case where uncertainties in the calibration of the mass-observable relation were so small to be neglected, the combination of Planck priors with cluster counts and power spectrum would constrain the total neutrino mass down to σ(M{sub ν}) ∼ 0.034 eV, i.e. the minimum neutrino mass predicted by oscillation experiments would be detected in a ΛCDM framework. We thus show that galaxy clusters from future wide galaxy surveys will be an excellent tool for studying cosmology and fundamental physics.« less
  • With the largest spectroscopic galaxy survey volume drawn from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), we can extract cosmological constraints from the measurements of redshift and geometric distortions at quasi-linear scales (e.g. above 50 h -1 Mpc). We analyse the broad-range shape of the monopole and quadrupole correlation functions of the BOSS Data Release 12 (DR12) CMASS galaxy sample, at the effective redshift z = 0.59, to obtain constraints on the Hubble expansion rate H(z), the angular- diameter distance D A (z), the normalized growth rate f(z)σ 8 (z), and the physical matter density Ω m h 2 .Wemore » obtain robust measurements by including a polynomial as the model for the systematic errors, and find it works very well against the systematic effects, e.g. ones induced by stars and seeing. We provide accurate measurements (D A (0.59)r s,fid /r s , H(0.59)r s /r s,fid , f(0.59)σ 8 (0.59), Ω m h 2 ) = (1427 ± 26 Mpc, 97.3 ± 3.3 kms -1 Mpc -1 , 0.488 ± 0.060, 0.135 ± 0.016), where r s is the comoving sound horizon at the drag epoch and r s,fid = 147.66 Mpc is the sound scale of the fiducial cosmology used in this study. The parameters which are not well constrained by our galaxy clustering analysis are marginalized over with wide flat priors. Since no priors from other data sets, e.g. cosmic microwave background (CMB), are adopted and no dark energy models are assumed, our results from BOSS CMASS galaxy clustering alone may be combined with other data sets, i.e. CMB, SNe, lensing or other galaxy clustering data to constrain the parameters of a given cosmological model. The uncertainty on the dark energy equation of state parameter, w, from CMB+CMASS is about 8 per cent. The uncertainty on the curvature fraction, Ω k , is 0.3 per cent. We do not find deviation from flat ΛCDM.« less
  • Many approaches to obtaining cosmological constraints rely on the connection between galaxies and dark matter. However, the distribution of galaxies is dependent on their formation and evolution as well as on the cosmological model, and galaxy formation is still not a well-constrained process. Thus, methods that probe cosmology using galaxies as tracers for dark matter must be able to accurately estimate the cosmological parameters. This can be done without knowing details of galaxy formation a priori as long as the galaxies are well represented by a halo occupation distribution (HOD). We apply this reasoning to the method of obtaining Ωmore » {sub m} and σ{sub 8} from galaxy clustering combined with the mass-to-number ratio of galaxy clusters. To test the sensitivity of this method to variations due to galaxy formation, we consider several different models applied to the same cosmological dark matter simulation. The cosmological parameters are then estimated using the observables in each model, marginalizing over the parameters of the HOD. We find that for models where the galaxies can be well represented by a parameterized HOD, this method can successfully extract the desired cosmological parameters for a wide range of galaxy formation prescriptions.« less