# Correlation consistent basis sets for lanthanides: The atoms La–Lu

## Abstract

Using the 3rd-order Douglas-Kroll-Hess (DKH3) Hamiltonian, all-electron correlation consistent basis sets of double-, triple-, and quadruple-zeta quality have been developed for the lanthanide elements La through Lu. Basis sets designed for the recovery of valence correlation (defined here as 4f5s5p5d6s), cc-pVnZ-DK3, and outer-core correlation (valence + 4s4p4d), cc-pwCVnZ-DK3, are reported (n = D, T, and Q). Systematic convergence of both Hartree-Fock and correlation energies towards their respective complete basis set (CBS) limits are observed. Benchmark calculations of the first three ionization potentials (IPs) of La through Lu are reported at the DKH3 coupled cluster singles and doubles with perturbative triples, CCSD(T), level of theory, including effects of correlation down through the 4s electrons. Spin-orbit coupling is treated at the 2-component HF level. After extrapolation to the CBS limit, the average errors with respect to experiment were just 0.52, 1.14, and 4.24 kcal/mol for the 1st, 2nd, and 3rd IPs, respectively, compared to the average experimental uncertainties of 0.03, 1.78, and 2.65 kcal/mol, respectively. The new basis sets are also used in CCSD(T) benchmark calculations of the equilibrium geometries, atomization energies, and heats of formation for Gd{sub 2}, GdF, and GdF{sub 3}. Except for the equilibrium geometry and harmonic frequency ofmore »

- Authors:

- Department of Chemistry, Washington State University, Pullman, Washington 99164-4630 (United States)

- Publication Date:

- OSTI Identifier:
- 22679022

- Resource Type:
- Journal Article

- Resource Relation:
- Journal Name: Journal of Chemical Physics; Journal Volume: 145; Journal Issue: 5; Other Information: (c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA)

- Country of Publication:
- United States

- Language:
- English

- Subject:
- 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ATOMIZATION; ELECTRON CORRELATION; EXPERIMENTAL DATA; FORMATION HEAT; GADOLINIUM FLUORIDES; HARTREE-FOCK METHOD; L-S COUPLING; RARE EARTHS; TEMPERATURE RANGE 0273-0400 K

### Citation Formats

```
Lu, Qing, and Peterson, Kirk A., E-mail: kipeters@wsu.edu.
```*Correlation consistent basis sets for lanthanides: The atoms La–Lu*. United States: N. p., 2016.
Web. doi:10.1063/1.4959280.

```
Lu, Qing, & Peterson, Kirk A., E-mail: kipeters@wsu.edu.
```*Correlation consistent basis sets for lanthanides: The atoms La–Lu*. United States. doi:10.1063/1.4959280.

```
Lu, Qing, and Peterson, Kirk A., E-mail: kipeters@wsu.edu. Sun .
"Correlation consistent basis sets for lanthanides: The atoms La–Lu". United States.
doi:10.1063/1.4959280.
```

```
@article{osti_22679022,
```

title = {Correlation consistent basis sets for lanthanides: The atoms La–Lu},

author = {Lu, Qing and Peterson, Kirk A., E-mail: kipeters@wsu.edu},

abstractNote = {Using the 3rd-order Douglas-Kroll-Hess (DKH3) Hamiltonian, all-electron correlation consistent basis sets of double-, triple-, and quadruple-zeta quality have been developed for the lanthanide elements La through Lu. Basis sets designed for the recovery of valence correlation (defined here as 4f5s5p5d6s), cc-pVnZ-DK3, and outer-core correlation (valence + 4s4p4d), cc-pwCVnZ-DK3, are reported (n = D, T, and Q). Systematic convergence of both Hartree-Fock and correlation energies towards their respective complete basis set (CBS) limits are observed. Benchmark calculations of the first three ionization potentials (IPs) of La through Lu are reported at the DKH3 coupled cluster singles and doubles with perturbative triples, CCSD(T), level of theory, including effects of correlation down through the 4s electrons. Spin-orbit coupling is treated at the 2-component HF level. After extrapolation to the CBS limit, the average errors with respect to experiment were just 0.52, 1.14, and 4.24 kcal/mol for the 1st, 2nd, and 3rd IPs, respectively, compared to the average experimental uncertainties of 0.03, 1.78, and 2.65 kcal/mol, respectively. The new basis sets are also used in CCSD(T) benchmark calculations of the equilibrium geometries, atomization energies, and heats of formation for Gd{sub 2}, GdF, and GdF{sub 3}. Except for the equilibrium geometry and harmonic frequency of GdF, which are accurately known from experiment, all other calculated quantities represent significant improvements compared to the existing experimental quantities. With estimated uncertainties of about ±3 kcal/mol, the 0 K atomization energies (298 K heats of formation) are calculated to be (all in kcal/mol): 33.2 (160.1) for Gd{sub 2}, 151.7 (−36.6) for GdF, and 447.1 (−295.2) for GdF{sub 3}.},

doi = {10.1063/1.4959280},

journal = {Journal of Chemical Physics},

number = 5,

volume = 145,

place = {United States},

year = {Sun Aug 07 00:00:00 EDT 2016},

month = {Sun Aug 07 00:00:00 EDT 2016}

}