skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The ALP miracle: unified inflaton and dark matter

Abstract

We propose a scenario where both inflation and dark matter are described by a single axion-like particle (ALP) in a unified manner. In a class of the minimal axion hilltop inflation, the effective masses at the maximum and mimimum of the potential have equal magnitude but opposite sign, so that the ALP inflaton is light both during inflation and in the true vacuum. After inflation, most of the ALPs decay and evaporate into plasma through a coupling to photons, and the remaining ones become dark matter. We find that the observed CMB and matter power spectrum as well as the dark matter abundance point to an ALP of mass m {sub φ} = O(0.01) eV and the axion-photon coupling g {sub φ} {sub γ} {sub γ} = O(10{sup −11}) GeV{sup −1}: the ALP miracle . The suggested parameter region is within the reach of the next generation axion helioscope, IAXO, and high-intensity laser experiments in the future. Furthermore, thermalized ALPs contribute to hot dark matter and its abundance is given in terms of the effective number of extra neutrino species, Δ N {sub eff} ≅ 0.03, which can be tested by the future CMB and BAO observations. We also discussmore » a case with multiple ALPs, where the coupling to photons can be enhanced in the early Universe by an order of magnitude or more, which enlarges the parameter space for the ALP miracle. The heavy ALP plays a role of the waterfall field in hybrid inflation, and reheats the Universe, and it can be searched for in various experiments such as SHiP.« less

Authors:
;  [1];  [2]
  1. Department of Physics, Tohoku University, Sendai, Miyagi 980-8578 (Japan)
  2. IHEP, Chinese Academy of Sciences, Beijing 100049 (China)
Publication Date:
OSTI Identifier:
22676199
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Cosmology and Astroparticle Physics; Journal Volume: 2017; Journal Issue: 05; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; ABUNDANCE; AXIONS; COUPLING; GEV RANGE; INFLATIONARY UNIVERSE; INFLATONS; LASER RADIATION; MASS; NEUTRINOS; NONLUMINOUS MATTER; PHOTONS; PLASMA; RELICT RADIATION; SPACE; SPECTRA; UNIVERSE; VISIBLE RADIATION

Citation Formats

Daido, Ryuji, Takahashi, Fuminobu, and Yin, Wen, E-mail: daido@tuhep.phys.tohoku.ac.jp, E-mail: fumi@tuhep.phys.tohoku.ac.jp, E-mail: wyin@ihep.ac.cn. The ALP miracle: unified inflaton and dark matter. United States: N. p., 2017. Web. doi:10.1088/1475-7516/2017/05/044.
Daido, Ryuji, Takahashi, Fuminobu, & Yin, Wen, E-mail: daido@tuhep.phys.tohoku.ac.jp, E-mail: fumi@tuhep.phys.tohoku.ac.jp, E-mail: wyin@ihep.ac.cn. The ALP miracle: unified inflaton and dark matter. United States. doi:10.1088/1475-7516/2017/05/044.
Daido, Ryuji, Takahashi, Fuminobu, and Yin, Wen, E-mail: daido@tuhep.phys.tohoku.ac.jp, E-mail: fumi@tuhep.phys.tohoku.ac.jp, E-mail: wyin@ihep.ac.cn. Mon . "The ALP miracle: unified inflaton and dark matter". United States. doi:10.1088/1475-7516/2017/05/044.
@article{osti_22676199,
title = {The ALP miracle: unified inflaton and dark matter},
author = {Daido, Ryuji and Takahashi, Fuminobu and Yin, Wen, E-mail: daido@tuhep.phys.tohoku.ac.jp, E-mail: fumi@tuhep.phys.tohoku.ac.jp, E-mail: wyin@ihep.ac.cn},
abstractNote = {We propose a scenario where both inflation and dark matter are described by a single axion-like particle (ALP) in a unified manner. In a class of the minimal axion hilltop inflation, the effective masses at the maximum and mimimum of the potential have equal magnitude but opposite sign, so that the ALP inflaton is light both during inflation and in the true vacuum. After inflation, most of the ALPs decay and evaporate into plasma through a coupling to photons, and the remaining ones become dark matter. We find that the observed CMB and matter power spectrum as well as the dark matter abundance point to an ALP of mass m {sub φ} = O(0.01) eV and the axion-photon coupling g {sub φ} {sub γ} {sub γ} = O(10{sup −11}) GeV{sup −1}: the ALP miracle . The suggested parameter region is within the reach of the next generation axion helioscope, IAXO, and high-intensity laser experiments in the future. Furthermore, thermalized ALPs contribute to hot dark matter and its abundance is given in terms of the effective number of extra neutrino species, Δ N {sub eff} ≅ 0.03, which can be tested by the future CMB and BAO observations. We also discuss a case with multiple ALPs, where the coupling to photons can be enhanced in the early Universe by an order of magnitude or more, which enlarges the parameter space for the ALP miracle. The heavy ALP plays a role of the waterfall field in hybrid inflation, and reheats the Universe, and it can be searched for in various experiments such as SHiP.},
doi = {10.1088/1475-7516/2017/05/044},
journal = {Journal of Cosmology and Astroparticle Physics},
number = 05,
volume = 2017,
place = {United States},
year = {Mon May 01 00:00:00 EDT 2017},
month = {Mon May 01 00:00:00 EDT 2017}
}