skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Cusps in the center of galaxies: a real conflict with observations or a numerical artefact of cosmological simulations?

Abstract

Galaxy observations and N-body cosmological simulations produce conflicting dark matter halo density profiles for galaxy central regions. While simulations suggest a cuspy and universal density profile (UDP) of this region, the majority of observations favor variable profiles with a core in the center. In this paper, we investigate the convergency of standard N-body simulations, especially in the cusp region, following the approach proposed by [1]. We simulate the well known Hernquist model using the SPH code Gadget-3 and consider the full array of dynamical parameters of the particles. We find that, although the cuspy profile is stable, all integrals of motion characterizing individual particles suffer strong unphysical variations along the whole halo, revealing an effective interaction between the test bodies. This result casts doubts on the reliability of the velocity distribution function obtained in the simulations. Moreover, we find unphysical Fokker-Planck streams of particles in the cusp region. The same streams should appear in cosmological N-body simulations, being strong enough to change the shape of the cusp or even to create it. Our analysis, based on the Hernquist model and the standard SPH code, strongly suggests that the UDPs generally found by the cosmological N-body simulations may be a consequencemore » of numerical effects. A much better understanding of the N-body simulation convergency is necessary before a 'core-cusp problem' can properly be used to question the validity of the CDM model.« less

Authors:
; ; ; ;  [1];  [2]
  1. Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Correo Central, Santiago (Chile)
  2. Departamento de Física, FCFM, Universidad de Chile, Blanco Encalada 2008, Santiago (Chile)
Publication Date:
OSTI Identifier:
22676194
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Cosmology and Astroparticle Physics; Journal Volume: 2017; Journal Issue: 05; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; COSMOLOGICAL MODELS; DENSITY; DISTRIBUTION; DISTRIBUTION FUNCTIONS; FOKKER-PLANCK EQUATION; GALAXIES; INTERACTIONS; NONLUMINOUS MATTER; RELIABILITY; SIMULATION; STREAMS; VELOCITY

Citation Formats

Baushev, A.N., Valle, L. del, Campusano, L.E., Escala, A., Muñoz, R.R., and Palma, G.A., E-mail: baushev@gmail.com, E-mail: ldelvalleb@gmail.com, E-mail: luis@das.uchile.cl, E-mail: aescala@das.uchile.cl, E-mail: rmunoz@das.uchile.cl, E-mail: gpalmaquilod@ing.uchile.cl. Cusps in the center of galaxies: a real conflict with observations or a numerical artefact of cosmological simulations?. United States: N. p., 2017. Web. doi:10.1088/1475-7516/2017/05/042.
Baushev, A.N., Valle, L. del, Campusano, L.E., Escala, A., Muñoz, R.R., & Palma, G.A., E-mail: baushev@gmail.com, E-mail: ldelvalleb@gmail.com, E-mail: luis@das.uchile.cl, E-mail: aescala@das.uchile.cl, E-mail: rmunoz@das.uchile.cl, E-mail: gpalmaquilod@ing.uchile.cl. Cusps in the center of galaxies: a real conflict with observations or a numerical artefact of cosmological simulations?. United States. doi:10.1088/1475-7516/2017/05/042.
Baushev, A.N., Valle, L. del, Campusano, L.E., Escala, A., Muñoz, R.R., and Palma, G.A., E-mail: baushev@gmail.com, E-mail: ldelvalleb@gmail.com, E-mail: luis@das.uchile.cl, E-mail: aescala@das.uchile.cl, E-mail: rmunoz@das.uchile.cl, E-mail: gpalmaquilod@ing.uchile.cl. Mon . "Cusps in the center of galaxies: a real conflict with observations or a numerical artefact of cosmological simulations?". United States. doi:10.1088/1475-7516/2017/05/042.
@article{osti_22676194,
title = {Cusps in the center of galaxies: a real conflict with observations or a numerical artefact of cosmological simulations?},
author = {Baushev, A.N. and Valle, L. del and Campusano, L.E. and Escala, A. and Muñoz, R.R. and Palma, G.A., E-mail: baushev@gmail.com, E-mail: ldelvalleb@gmail.com, E-mail: luis@das.uchile.cl, E-mail: aescala@das.uchile.cl, E-mail: rmunoz@das.uchile.cl, E-mail: gpalmaquilod@ing.uchile.cl},
abstractNote = {Galaxy observations and N-body cosmological simulations produce conflicting dark matter halo density profiles for galaxy central regions. While simulations suggest a cuspy and universal density profile (UDP) of this region, the majority of observations favor variable profiles with a core in the center. In this paper, we investigate the convergency of standard N-body simulations, especially in the cusp region, following the approach proposed by [1]. We simulate the well known Hernquist model using the SPH code Gadget-3 and consider the full array of dynamical parameters of the particles. We find that, although the cuspy profile is stable, all integrals of motion characterizing individual particles suffer strong unphysical variations along the whole halo, revealing an effective interaction between the test bodies. This result casts doubts on the reliability of the velocity distribution function obtained in the simulations. Moreover, we find unphysical Fokker-Planck streams of particles in the cusp region. The same streams should appear in cosmological N-body simulations, being strong enough to change the shape of the cusp or even to create it. Our analysis, based on the Hernquist model and the standard SPH code, strongly suggests that the UDPs generally found by the cosmological N-body simulations may be a consequence of numerical effects. A much better understanding of the N-body simulation convergency is necessary before a 'core-cusp problem' can properly be used to question the validity of the CDM model.},
doi = {10.1088/1475-7516/2017/05/042},
journal = {Journal of Cosmology and Astroparticle Physics},
number = 05,
volume = 2017,
place = {United States},
year = {Mon May 01 00:00:00 EDT 2017},
month = {Mon May 01 00:00:00 EDT 2017}
}
  • Models of disk galaxy formation commonly predict the existence of an extended reservoir of accreted hot gas surrounding massive spirals at low redshift. As a test of these models, we use X-ray and H{alpha} data of the two massive, quiescent edge-on spirals NGC 5746 and NGC 5170 to investigate the amount and origin of any hot gas in their halos. Contrary to our earlier claim, the Chandra analysis of NGC 5746, employing more recent calibration data, does not reveal any significant evidence for diffuse X-ray emission outside the optical disk, with a 3{sigma} upper limit to the halo X-ray luminositymore » of 4 x 10{sup 39} erg s{sup -1}. An identical study of the less massive NGC 5170 also fails to detect any extraplanar X-ray emission. By extracting hot halo properties of disk galaxies formed in cosmological hydrodynamical simulations, we compare these results to expectations for cosmological accretion of hot gas by spirals. For Milky-Way-sized galaxies, these high-resolution simulations predict hot halo X-ray luminosities which are lower by a factor of {approx}2 compared to our earlier results reported by Toft et al. We find the new simulation predictions to be consistent with our observational constraints for both NGC 5746 and NGC 5170, while also confirming that the hot gas detected so far around more actively star-forming spirals is in general probably associated with stellar activity in the disk. Observational results on quiescent disk galaxies at the high-mass end are nevertheless providing powerful constraints on theoretical predictions, and hence on the assumed input physics in numerical studies of disk galaxy formation and evolution.« less
  • In setting up initial conditions for ensembles of cosmological N-body simulations there are, fundamentally, two choices: either maximizing the correspondence of the initial density field to the assumed fourier-space clustering or, instead, matching to real-space statistics and allowing the DC mode (i.e. overdensity) to vary from box to box as it would in the real universe. As a stringent test of both approaches, I perform ensembles of simulations using power law and a ''powerlaw times a bump'' model inspired by baryon acoustic oscillations (BAO), exploiting the self-similarity of these initial conditions to quantify the accuracy of the matter-matter two-point correlationmore » results. The real-space method, which was originally proposed by Pen 1997 [1] and implemented by Sirko 2005 [2], performed well in producing the expected self-similar behavior and corroborated the non-linear evolution of the BAO feature observed in conventional simulations, even in the strongly-clustered regime (σ{sub 8}∼>1). In revisiting the real-space method championed by [2], it was also noticed that this earlier study overlooked an important integral constraint correction to the correlation function in results from the conventional approach that can be important in ΛCDM simulations with L{sub box}∼<1 h{sup −1}Gpc and on scales r∼>L{sub box}/10. Rectifying this issue shows that the fourier space and real space methods are about equally accurate and efficient for modeling the evolution and growth of the correlation function, contrary to previous claims. An appendix provides a useful independent-of-epoch analytic formula for estimating the importance of the integral constraint bias on correlation function measurements in ΛCDM simulations.« less
  • Cold dark matter (CDM) hierarchical structure formation models predict the existence of large-scale accretion shocks between the virial and turnaround radii of clusters of galaxies. Kocsis et al. suggest that the Sunyaev-Zel'dovich signal associated with such shocks might be observable with the next generation radio interferometer, ALMA (Atacama Large Millimeter Array). We study the three-dimensional distribution of accretion shocks around individual clusters of galaxies drawn from adaptive mesh refinement (AMR) and smoothed particle hydrodynamics simulations of {lambda}CDM (dark energy dominated CDM) models. In relaxed clusters, we find two distinct sets of shocks. One set ('virial shocks'), with Mach numbers ofmore » 2.5-4, is located at radii 0.9-1.3 R {sub vir}, where R {sub vir} is the spherical infall estimate of the virial radius, covering about 40%-50% of the total surface area around clusters at these radii. Another set of stronger shocks ({sup e}xternal shocks{sup )} is located farther out, at about 3 R {sub vir}, with large Mach numbers ({approx}100), covering about 40%-60% of the surface area. We simulate SZ surface brightness maps of relaxed massive galaxy clusters drawn from high-resolution AMR runs, and conclude that ALMA should be capable of detecting the virial shocks in massive clusters of galaxies. More simulations are needed to improve estimates of astrophysical noise and to determine optimal observational strategies.« less
  • We present smoothed particle hydrodynamics cosmological simulations of the formation of three disk galaxies with a detailed treatment of chemical evolution and cooling. The resulting galaxies have properties compatible with observations: relatively high disk-to-total ratios, thin stellar disks, and good agreement with the Tully-Fisher and the luminosity-size relations. They present a break in the luminosity profile at 3.0 +- 0.5 disk scale lengths while showing an exponential mass profile without any apparent breaks, which is in line with recent observational results. Since the stellar mass profile is exponential, only differences in the stellar populations can be the cause of themore » luminosity break. Although we find a cutoff for the star formation rate (SFR) imposed by a density threshold in our star formation model, it does not coincide with the luminosity break and is located at 4.3 +- 0.4 disk scale lengths, with star formation going on between both radii. The color profiles and the age profiles are 'U-shaped', with the minimum for both profiles located approximately at the break radius. The SFR to stellar mass ratio increases until the break, explaining the coincidence of the break with the minimum of the age profile. Beyond the break, we find a steep decline in the gas density and, consequently, a decline in the SFR and redder colors. We show that most stars (64%-78%) in the outer disk originate in the inner disk and afterward migrate there. Such stellar migrations are likely the main origin of the U-shaped age profile and, therefore, of the luminosity break.« less
  • In order to investigate the structure and dynamics of the recently discovered massive (M{sub *} {approx}> 10{sup 11} M{sub sun}) compact z {approx} 2 galaxies, cosmological hydrodynamical/N-body simulations of a {approx}50,000 Mpc{sup 3} comoving (Lagrangian), proto-cluster region have been undertaken. At z = 2, the highest resolution simulation contains {approx}5800 resolved galaxies, of which 509, 27, and 5 have M{sub *}>10{sup 10} M{sub sun}, M{sub *}>10{sup 11} M{sub sun}, and M{sub *}>4 x 10{sup 11} M{sub sun}, respectively. Total stellar masses, effective radii, and characteristic stellar densities have been determined for all galaxies. At z = 2, for the definitelymore » well-resolved mass range of M{sub *} {approx}> 10{sup 11} M{sub sun}, we fit the relation R{sub eff} = R{sub eff,12} M {sup 1/3}{sub *,12} to the data, where M{sub *,12} is the total stellar mass in units of 10{sup 12} M{sub sun}. This yields R{sub eff,12} = (1.20 {+-} 0.04) kpc, in line with observational findings for compact z {approx} 2 galaxies, though somewhat more compact than the observed average. The only line-of-sight velocity dispersion measured for a z {approx} 2 compact galaxy is very large, {sigma}{sub *,p} = 510{sup +165}{sub -95} km s{sup -1}. This value can be matched at about the 1{sigma} level, although a somewhat larger mass than the estimated M{sub *} {approx_equal} 2 x 10{sup 11} M{sub sun} is indicated. For the above mass range, the galaxies have an average axial ratio (b/a) = 0.64 {+-} 0.02 with a dispersion of 0.1, and an average rotation to one-dimensional velocity-dispersion ratio (v/{sigma}) = 0.46 {+-} 0.06 with a dispersion of 0.3, and a maximum value of v/{sigma} {approx_equal} 1.1. Both rotation and velocity anisotropy contribute significantly in flattening the compact galaxies. Some of the observed compact galaxies appear flatter than any of the simulated galaxies. Finally, it is found that the massive compact galaxies are strongly baryon dominated in their inner parts, with typical dark matter mass fractions of order only 20% inside of r = 2 R{sub eff}.« less