skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: CRPropa 3.1—a low energy extension based on stochastic differential equations

Abstract

The propagation of charged cosmic rays through the Galactic environment influences all aspects of the observation at Earth. Energy spectrum, composition and arrival directions are changed due to deflections in magnetic fields and interactions with the interstellar medium. Today the transport is simulated with different simulation methods either based on the solution of a transport equation (multi-particle picture) or a solution of an equation of motion (single-particle picture). We developed a new module for the publicly available propagation software CRPropa 3.1, where we implemented an algorithm to solve the transport equation using stochastic differential equations. This technique allows us to use a diffusion tensor which is anisotropic with respect to an arbitrary magnetic background field. The source code of CRPropa is written in C++ with python steering via SWIG which makes it easy to use and computationally fast. In this paper, we present the new low-energy propagation code together with validation procedures that are developed to proof the accuracy of the new implementation. Furthermore, we show first examples of the cosmic ray density evolution, which depends strongly on the ratio of the parallel κ{sub ∥} and perpendicular κ{sub ⊥} diffusion coefficients. This dependency is systematically examined as well the influencemore » of the particle rigidity on the diffusion process.« less

Authors:
; ;  [1];  [2];  [3]
  1. Theoretische Physik IV: Plasma-Astroteilchenphysik, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum (Germany)
  2. Theoretische Physik IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum (Germany)
  3. II Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany)
Publication Date:
OSTI Identifier:
22676142
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Cosmology and Astroparticle Physics; Journal Volume: 2017; Journal Issue: 06; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ACCURACY; ALGORITHMS; ANISOTROPY; COMPUTERIZED SIMULATION; COSMIC RADIATION; COSMIC RAY PROPAGATION; DENSITY; DIFFUSION; ENERGY SPECTRA; EQUATIONS OF MOTION; GALAXIES; INTERACTIONS; MAGNETIC FIELDS; MATHEMATICAL SOLUTIONS; STOCHASTIC PROCESSES; TRANSPORT THEORY

Citation Formats

Merten, Lukas, Tjus, Julia Becker, Eichmann, Björn, Fichtner, Horst, and Sigl, Günter, E-mail: lukas.merten@rub.de, E-mail: julia.tjus@rub.de, E-mail: hf@tp4.rub.de, E-mail: eiche@tp4.rub.de, E-mail: guenter.sigl@desy.de. CRPropa 3.1—a low energy extension based on stochastic differential equations. United States: N. p., 2017. Web. doi:10.1088/1475-7516/2017/06/046.
Merten, Lukas, Tjus, Julia Becker, Eichmann, Björn, Fichtner, Horst, & Sigl, Günter, E-mail: lukas.merten@rub.de, E-mail: julia.tjus@rub.de, E-mail: hf@tp4.rub.de, E-mail: eiche@tp4.rub.de, E-mail: guenter.sigl@desy.de. CRPropa 3.1—a low energy extension based on stochastic differential equations. United States. doi:10.1088/1475-7516/2017/06/046.
Merten, Lukas, Tjus, Julia Becker, Eichmann, Björn, Fichtner, Horst, and Sigl, Günter, E-mail: lukas.merten@rub.de, E-mail: julia.tjus@rub.de, E-mail: hf@tp4.rub.de, E-mail: eiche@tp4.rub.de, E-mail: guenter.sigl@desy.de. Thu . "CRPropa 3.1—a low energy extension based on stochastic differential equations". United States. doi:10.1088/1475-7516/2017/06/046.
@article{osti_22676142,
title = {CRPropa 3.1—a low energy extension based on stochastic differential equations},
author = {Merten, Lukas and Tjus, Julia Becker and Eichmann, Björn and Fichtner, Horst and Sigl, Günter, E-mail: lukas.merten@rub.de, E-mail: julia.tjus@rub.de, E-mail: hf@tp4.rub.de, E-mail: eiche@tp4.rub.de, E-mail: guenter.sigl@desy.de},
abstractNote = {The propagation of charged cosmic rays through the Galactic environment influences all aspects of the observation at Earth. Energy spectrum, composition and arrival directions are changed due to deflections in magnetic fields and interactions with the interstellar medium. Today the transport is simulated with different simulation methods either based on the solution of a transport equation (multi-particle picture) or a solution of an equation of motion (single-particle picture). We developed a new module for the publicly available propagation software CRPropa 3.1, where we implemented an algorithm to solve the transport equation using stochastic differential equations. This technique allows us to use a diffusion tensor which is anisotropic with respect to an arbitrary magnetic background field. The source code of CRPropa is written in C++ with python steering via SWIG which makes it easy to use and computationally fast. In this paper, we present the new low-energy propagation code together with validation procedures that are developed to proof the accuracy of the new implementation. Furthermore, we show first examples of the cosmic ray density evolution, which depends strongly on the ratio of the parallel κ{sub ∥} and perpendicular κ{sub ⊥} diffusion coefficients. This dependency is systematically examined as well the influence of the particle rigidity on the diffusion process.},
doi = {10.1088/1475-7516/2017/06/046},
journal = {Journal of Cosmology and Astroparticle Physics},
number = 06,
volume = 2017,
place = {United States},
year = {Thu Jun 01 00:00:00 EDT 2017},
month = {Thu Jun 01 00:00:00 EDT 2017}
}
  • It is shown that the effective Hamiltonian representation, as it is formulated in author's papers, serves as a basis for distinguishing, in a broadband environment of an open quantum system, independent noise sources that determine, in terms of the stationary quantum Wiener and Poisson processes in the Markov approximation, the effective Hamiltonian and the equation for the evolution operator of the open system and its environment. General stochastic differential equations of generalized Langevin (non-Wiener) type for the evolution operator and the kinetic equation for the density matrix of an open system are obtained, which allow one to analyze the dynamicsmore » of a wide class of localized open systems in the Markov approximation. The main distinctive features of the dynamics of open quantum systems described in this way are the stabilization of excited states with respect to collective processes and an additional frequency shift of the spectrum of the open system. As an illustration of the general approach developed, the photon dynamics in a single-mode cavity without losses on the mirrors is considered, which contains identical intracavity atoms coupled to the external vacuum electromagnetic field. For some atomic densities, the photons of the cavity mode are 'locked' inside the cavity, thus exhibiting a new phenomenon of radiation trapping and non-Wiener dynamics.« less
  • A fully implicit integration method for stochastic differential equations with significant multiplicative noise and stiffness in both the drift and diffusion coefficients has been constructed, analyzed and illustrated with numerical examples in this work. The method has strong order 1.0 consistency and has user-selectable parameters that allow the user to expand the stability region of the method to cover almost the entire drift-diffusion stability plane. The large stability region enables the method to take computationally efficient time steps. A system of chemical Langevin equations simulated with the method illustrates its computational efficiency.
  • A computational methodology is developed to address the solution of high-dimensional stochastic problems. It utilizes high-dimensional model representation (HDMR) technique in the stochastic space to represent the model output as a finite hierarchical correlated function expansion in terms of the stochastic inputs starting from lower-order to higher-order component functions. HDMR is efficient at capturing the high-dimensional input-output relationship such that the behavior for many physical systems can be modeled to good accuracy only by the first few lower-order terms. An adaptive version of HDMR is also developed to automatically detect the important dimensions and construct higher-order terms using only themore » important dimensions. The newly developed adaptive sparse grid collocation (ASGC) method is incorporated into HDMR to solve the resulting sub-problems. By integrating HDMR and ASGC, it is computationally possible to construct a low-dimensional stochastic reduced-order model of the high-dimensional stochastic problem and easily perform various statistic analysis on the output. Several numerical examples involving elementary mathematical functions and fluid mechanics problems are considered to illustrate the proposed method. The cases examined show that the method provides accurate results for stochastic dimensionality as high as 500 even with large-input variability. The efficiency of the proposed method is examined by comparing with Monte Carlo (MC) simulation.« less
  • This paper proposes a newly developed one-step derivative-free method, that is 2-stage stochastic Runge-Kutta (SRK2) to approximate the solution of stochastic delay differential equations (SDDEs) with a constant time lag, r > 0. General formulation of stochastic Runge-Kutta for SDDEs is introduced and Stratonovich Taylor series expansion for numerical solution of SRK2 is presented. Local truncation error of SRK2 is measured by comparing the Stratonovich Taylor expansion of the exact solution with the computed solution. Numerical experiment is performed to assure the validity of the method in simulating the strong solution of SDDEs.