skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: CLASH-VLT: constraints on f (R) gravity models with galaxy clusters using lensing and kinematic analyses

Abstract

We perform a maximum likelihood kinematic analysis of the two dynamically relaxed galaxy clusters MACS J1206.2-0847 at z =0.44 and RXC J2248.7-4431 at z =0.35 to determine the total mass profile in modified gravity models, using a modified version of the MAMPOSSt code of Mamon, Biviano and Bou and apos;e. Our work is based on the kinematic and lensing mass profiles derived using the data from the Cluster Lensing And Supernova survey with Hubble (hereafter CLASH) and the spectroscopic follow-up with the Very Large Telescope (hereafter CLASH-VLT). We assume a spherical Navarro-Frenk-White (NFW hereafter) profile in order to obtain a constraint on the fifth force interaction range λ for models in which the dependence of this parameter on the environment is negligible at the scale considered (i.e. λ= const ) and fixing the fifth force strength to the value predicted in f (R) gravity. We then use information from lensing analysis to put a prior on the other NFW free parameters. In the case of MACSJ 1206 the joint kinematic+lensing analysis leads to an upper limit on the effective interaction range λ≤1.61 mpc at Δχ{sup 2}=2.71 on the marginalized distribution. For RXJ 2248 instead a possible tension with the ΛCDMmore » model appears when adding lensing information, with a lower limit λ≥0.14 mpc at Δχ{sup 2}=2.71. This is consequence of the slight difference between the lensing and kinematic data, appearing in GR for this cluster, that could in principle be explained in terms of modifications of gravity. We discuss the impact of systematics and the limits of our analysis as well as future improvements of the results obtained. This work has interesting implications in view of upcoming and future large imaging and spectroscopic surveys, that will deliver lensing and kinematic mass reconstruction for a large number of galaxy clusters.« less

Authors:
; ; ;  [1];
  1. Dipartimento di Fisica, Sezione di Astronomia, Università di Trieste, Via Tiepolo 11, I-34143 Trieste (Italy)
Publication Date:
OSTI Identifier:
22676104
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Cosmology and Astroparticle Physics; Journal Volume: 2017; Journal Issue: 07; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; DISTRIBUTION; GALAXIES; GALAXY CLUSTERS; GRAVITATION; GRAVITATIONAL LENSES; INTERACTION RANGE; INTERACTIONS; MASS; MAXIMUM-LIKELIHOOD FIT; MODIFICATIONS; QUANTUM GRAVITY; RELATIVISTIC RANGE; TELESCOPES

Citation Formats

Pizzuti, L., Sartoris, B., Borgani, S., Girardi, M., E-mail: pizzuti@oats.inaf.it, E-mail: sartoris@oats.inaf.it, E-mail: borgani@oats.inaf.it, E-mail: girardi@oats.inaf.it, and and others. CLASH-VLT: constraints on f (R) gravity models with galaxy clusters using lensing and kinematic analyses. United States: N. p., 2017. Web. doi:10.1088/1475-7516/2017/07/023.
Pizzuti, L., Sartoris, B., Borgani, S., Girardi, M., E-mail: pizzuti@oats.inaf.it, E-mail: sartoris@oats.inaf.it, E-mail: borgani@oats.inaf.it, E-mail: girardi@oats.inaf.it, & and others. CLASH-VLT: constraints on f (R) gravity models with galaxy clusters using lensing and kinematic analyses. United States. doi:10.1088/1475-7516/2017/07/023.
Pizzuti, L., Sartoris, B., Borgani, S., Girardi, M., E-mail: pizzuti@oats.inaf.it, E-mail: sartoris@oats.inaf.it, E-mail: borgani@oats.inaf.it, E-mail: girardi@oats.inaf.it, and and others. Sat . "CLASH-VLT: constraints on f (R) gravity models with galaxy clusters using lensing and kinematic analyses". United States. doi:10.1088/1475-7516/2017/07/023.
@article{osti_22676104,
title = {CLASH-VLT: constraints on f (R) gravity models with galaxy clusters using lensing and kinematic analyses},
author = {Pizzuti, L. and Sartoris, B. and Borgani, S. and Girardi, M., E-mail: pizzuti@oats.inaf.it, E-mail: sartoris@oats.inaf.it, E-mail: borgani@oats.inaf.it, E-mail: girardi@oats.inaf.it and and others},
abstractNote = {We perform a maximum likelihood kinematic analysis of the two dynamically relaxed galaxy clusters MACS J1206.2-0847 at z =0.44 and RXC J2248.7-4431 at z =0.35 to determine the total mass profile in modified gravity models, using a modified version of the MAMPOSSt code of Mamon, Biviano and Bou and apos;e. Our work is based on the kinematic and lensing mass profiles derived using the data from the Cluster Lensing And Supernova survey with Hubble (hereafter CLASH) and the spectroscopic follow-up with the Very Large Telescope (hereafter CLASH-VLT). We assume a spherical Navarro-Frenk-White (NFW hereafter) profile in order to obtain a constraint on the fifth force interaction range λ for models in which the dependence of this parameter on the environment is negligible at the scale considered (i.e. λ= const ) and fixing the fifth force strength to the value predicted in f (R) gravity. We then use information from lensing analysis to put a prior on the other NFW free parameters. In the case of MACSJ 1206 the joint kinematic+lensing analysis leads to an upper limit on the effective interaction range λ≤1.61 mpc at Δχ{sup 2}=2.71 on the marginalized distribution. For RXJ 2248 instead a possible tension with the ΛCDM model appears when adding lensing information, with a lower limit λ≥0.14 mpc at Δχ{sup 2}=2.71. This is consequence of the slight difference between the lensing and kinematic data, appearing in GR for this cluster, that could in principle be explained in terms of modifications of gravity. We discuss the impact of systematics and the limits of our analysis as well as future improvements of the results obtained. This work has interesting implications in view of upcoming and future large imaging and spectroscopic surveys, that will deliver lensing and kinematic mass reconstruction for a large number of galaxy clusters.},
doi = {10.1088/1475-7516/2017/07/023},
journal = {Journal of Cosmology and Astroparticle Physics},
number = 07,
volume = 2017,
place = {United States},
year = {Sat Jul 01 00:00:00 EDT 2017},
month = {Sat Jul 01 00:00:00 EDT 2017}
}
  • A pressureless scenario for the dark matter (DM) fluid is a widely adopted hypothesis, despite the absence of direct observational evidence. According to general relativity, the total mass-energy content of a system shapes the gravitational potential well, but different test particles perceive this potential in different ways depending on their properties. Cluster galaxy velocities, being <
  • We use high-precision kinematic and lensing measurements of the total mass profile of the dynamically relaxed galaxy cluster MACS J1206.2-0847 at z=0.44 to estimate the value of the ratio η=Ψ/Φ between the two scalar potentials in the linear perturbed Friedmann-Lemaitre-Robertson-Walker metric. An accurate measurement of this ratio, called anisotropic stress, could show possible, interesting deviations from the predictions of the theory of General Relativity, according to which Ψ should be equal to Φ. Complementary kinematic and lensing mass profiles were derived from exhaustive analyses using the data from the Cluster Lensing And Supernova survey with Hubble (CLASH) and the spectroscopicmore » follow-up with the Very Large Telescope (CLASH-VLT). Whereas the kinematic mass profile tracks only the time-time part of the perturbed metric (i.e. only Φ), the lensing mass profile reflects the contribution of both time-time and space-space components (i.e. the sum Φ+Ψ). We thus express η as a function of the mass profiles and perform our analysis over the radial range 0.5 Mpc≤ r≤ r{sub 200}=1.96 Mpc. Using a spherical Navarro-Frenk-White mass profile, which well fits the data, we obtain η(r{sub 200})=1.01 {sub −0.28}{sup +0.31} at the 68% C.L. We discuss the effect of assuming different functional forms for mass profiles and of the orbit anisotropy in the kinematic reconstruction. Interpreting this result within the well-studied f(R) modified gravity model, the constraint on η translates into an upper bound to the interaction length (inverse of the scalaron mass) smaller than 2 Mpc. This tight constraint on the f(R) interaction range is however substantially relaxed when systematic uncertainties in the analysis are considered. Our analysis highlights the potential of this method to detect deviations from general relativity, while calling for the need of further high-quality data on the total mass distribution of clusters and improved control on systematic effects.« less
  • Here, we present a comprehensive analysis of strong-lensing, weak-lensing shear and magnification data for a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters atmore » $$0.19\lesssim z\lesssim 0.69$$ selected from Cluster Lensing And Supernova survey with Hubble (CLASH). Our analysis combines constraints from 16-band Hubble Space Telescope observations and wide-field multi-color imaging taken primarily with Suprime-Cam on the Subaru Telescope, spanning a wide range of cluster radii (10''–16'). We reconstruct surface mass density profiles of individual clusters from a joint analysis of the full lensing constraints, and determine masses and concentrations for all of the clusters. We find the internal consistency of the ensemble mass calibration to be ≤5% ± 6% in the one-halo regime (200–2000 kpc h –1) compared to the CLASH weak-lensing-only measurements of Umetsu et al. For the X-ray-selected subsample of 16 clusters, we examine the concentration–mass (c–M) relation and its intrinsic scatter using a Bayesian regression approach. Our model yields a mean concentration of $$c{| }_{z=0.34}=3.95\pm 0.35$$ at M200c sime 14 × 1014 M⊙ and an intrinsic scatter of $$\sigma (\mathrm{ln}{c}_{200{\rm{c}}})=0.13\pm 0.06$$, which is in excellent agreement with Λ cold dark matter predictions when the CLASH selection function based on X-ray morphological regularity and the projection effects are taken into account. We also derive an ensemble-averaged surface mass density profile for the X-ray-selected subsample by stacking their individual profiles. The stacked lensing signal is detected at 33σ significance over the entire radial range ≤4000 kpc h –1, accounting for the effects of intrinsic profile variations and uncorrelated large-scale structure along the line of sight. The stacked mass profile is well described by a family of density profiles predicted for cuspy dark-matter-dominated halos in gravitational equilibrium, namely, the Navarro–Frenk–White (NFW), Einasto, and DARKexp models, whereas the single power-law, cored isothermal and Burkert density profiles are disfavored by the data. We show that cuspy halo models that include the large-scale two-halo term provide improved agreement with the data. For the NFW halo model, we measure a mean concentration of $${c}_{200{\rm{c}}}={3.79}_{-0.28}^{+0.30}$$ at $${M}_{200{\rm{c}}}={14.1}_{-1.0}^{+1.0}\times {10}^{14}\;{M}_{\odot }$$, demonstrating consistency between the complementary analysis methods.« less
  • We present a joint shear-and-magnification weak-lensing analysis of a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters at 0.19 ≲ z ≲ 0.69 selected from the Cluster Lensing And Supernova survey with Hubble (CLASH). Our analysis uses wide-field multi-color imaging, taken primarily with Suprime-Cam on the Subaru Telescope. From a stacked-shear-only analysis of the X-ray-selected subsample, we detect the ensemble-averaged lensing signal with a total signal-to-noise ratio of ≅ 25 in the radial range of 200-3500 kpc h {sup –1}, providing integrated constraints on the halo profile shape and concentration-mass relation. The stacked tangential-shear signal is well described bymore » a family of standard density profiles predicted for dark-matter-dominated halos in gravitational equilibrium, namely, the Navarro-Frenk-White (NFW), truncated variants of NFW, and Einasto models. For the NFW model, we measure a mean concentration of c{sub 200c}=4.01{sub −0.32}{sup +0.35} at an effective halo mass of M{sub 200c}=1.34{sub −0.09}{sup +0.10}×10{sup 15} M{sub ⊙}. We show that this is in excellent agreement with Λ cold dark matter (ΛCDM) predictions when the CLASH X-ray selection function and projection effects are taken into account. The best-fit Einasto shape parameter is α{sub E}=0.191{sub −0.068}{sup +0.071}, which is consistent with the NFW-equivalent Einasto parameter of ∼0.18. We reconstruct projected mass density profiles of all CLASH clusters from a joint likelihood analysis of shear-and-magnification data and measure cluster masses at several characteristic radii assuming an NFW density profile. We also derive an ensemble-averaged total projected mass profile of the X-ray-selected subsample by stacking their individual mass profiles. The stacked total mass profile, constrained by the shear+magnification data, is shown to be consistent with our shear-based halo-model predictions, including the effects of surrounding large-scale structure as a two-halo term, establishing further consistency in the context of the ΛCDM model.« less
  • We present profiles of temperature, gas mass, and hydrostatic mass estimated from new and archival X-ray observations of CLASH clusters. We compare measurements derived from XMM and Chandra observations with one another and compare both to gravitational lensing mass profiles derived with CLASH Hubble Space Telescope and Subaru Telescope lensing data. Radial profiles of Chandra and XMM measurements of electron density and enclosed gas mass are nearly identical, indicating that differences in hydrostatic masses inferred from X-ray observations arise from differences in gas-temperature measurements. Encouragingly, gas temperatures measured in clusters by XMM and Chandra are consistent with one another atmore » ∼100-200 kpc radii, but XMM temperatures systematically decline relative to Chandra temperatures at larger radii. The angular dependence of the discrepancy suggests that additional investigation on systematics such as the XMM point-spread function correction, vignetting, and off-axis responses is yet required. We present the CLASH-X mass-profile comparisons in the form of cosmology-independent and redshift-independent circular-velocity profiles. We argue that comparisons of circular-velocity profiles are the most robust way to assess mass bias. Ratios of Chandra hydrostatic equilibrium (HSE) mass profiles to CLASH lensing profiles show no obvious radial dependence in the 0.3-0.8 Mpc range. However, the mean mass biases inferred from the weak-lensing (WL) and SaWLens data are different. As an example, the weighted-mean value at 0.5 Mpc is (b) = 0.12 for the WL comparison and (b) = –0.11 for the SaWLens comparison. The ratios of XMM HSE mass profiles to CLASH lensing profiles show a pronounced radial dependence in the 0.3-1.0 Mpc range, with a weighted mean mass bias value rising to (b) ≳ 0.3 at ∼1 Mpc for the WL comparison and (b) ≈ 0.25 for the SaWLens comparison. The enclosed gas mass profiles from both Chandra and XMM rise to a value ≈1/8 times the total-mass profiles inferred from lensing at ≈0.5 Mpc and remain constant outside of that radius, suggesting that M {sub gas} × 8 profiles may be an excellent proxy for total-mass profiles at ≳ 0.5 Mpc in massive galaxy clusters.« less