skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A tale of two modes: neutrino free-streaming in the early universe

Journal Article · · Journal of Cosmology and Astroparticle Physics
 [1];  [2]; ;  [3]
  1. McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213 (United States)
  2. Department of Physics, Harvard University, 17 Oxford St., Cambridge, MA 02138 (United States)
  3. Physics Department, University of California, Davis, CA 95616 (United States)

We present updated constraints on the free-streaming nature of cosmological neutrinos from cosmic microwave background (CMB) temperature and polarization power spectra, baryonic acoustic oscillation data, and distance ladder measurements of the Hubble constant. Specifically, we consider a Fermi-like four-fermion interaction between massless neutrinos, characterized by an effective coupling constant G {sub eff}, and resulting in a neutrino opacity τ-dot {sub ν∝} G {sub eff}{sup 2} T {sub ν}{sup 5}. Using a conservative flat prior on the parameter log{sub 10}( G {sub eff} MeV{sup 2}), we find a bimodal posterior distribution with two clearly separated regions of high probability. The first of these modes is consistent with the standard ΛCDM cosmology and corresponds to neutrinos decoupling at redshift z {sub ν,dec} > 1.3×10{sup 5}, that is before the Fourier modes probed by the CMB damping tail enter the causal horizon. The other mode of the posterior, dubbed the 'interacting neutrino mode', corresponds to neutrino decoupling occurring within a narrow redshift window centered around z {sub ν,dec}∼8300. This mode is characterized by a high value of the effective neutrino coupling constant, log{sub 10}( G {sub eff} MeV{sup 2}) = −1.72 ± 0.10 (68% C.L.), together with a lower value of the scalar spectral index and amplitude of fluctuations, and a higher value of the Hubble parameter. Using both a maximum likelihood analysis and the ratio of the two mode's Bayesian evidence, we find the interacting neutrino mode to be statistically disfavored compared to the standard ΛCDM cosmology, and determine this result to be largely driven by the low- l CMB temperature data. Interestingly, the addition of CMB polarization and direct Hubble constant measurements significantly raises the statistical significance of this secondary mode, indicating that new physics in the neutrino sector could help explain the difference between local measurements of H {sub 0}, and those inferred from CMB data. A robust consequence of our results is that neutrinos must be free streaming long before the epoch of matter-radiation equality in order to fit current cosmological data.

OSTI ID:
22676093
Journal Information:
Journal of Cosmology and Astroparticle Physics, Vol. 2017, Issue 07; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 1475-7516
Country of Publication:
United States
Language:
English