skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Can tonne-scale direct detection experiments discover nuclear dark matter?

Abstract

Models of nuclear dark matter propose that the dark sector contains large composite states consisting of dark nucleons in analogy to Standard Model nuclei. We examine the direct detection phenomenology of a particular class of nuclear dark matter model at the current generation of tonne-scale liquid noble experiments, in particular DEAP-3600 and XENON1T. In our chosen nuclear dark matter scenario distinctive features arise in the recoil energy spectra due to the non-point-like nature of the composite dark matter state. We calculate the number of events required to distinguish these spectra from those of a standard point-like WIMP state with a decaying exponential recoil spectrum. In the most favourable regions of nuclear dark matter parameter space, we find that a few tens of events are needed to distinguish nuclear dark matter from WIMPs at the 3 σ level in a single experiment. Given the total exposure time of DEAP-3600 and XENON1T we find that at best a 2 σ distinction is possible by these experiments individually, while 3 σ sensitivity is reached for a range of parameters by the combination of the two experiments. We show that future upgrades of these experiments have potential to distinguish a large range of nuclearmore » dark matter models from that of a WIMP at greater than 3 σ .« less

Authors:
; ; ;  [1]
  1. Department of Physics, Royal Holloway University of London, Egham, Surrey, TW20 0EX (United Kingdom)
Publication Date:
OSTI Identifier:
22667635
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Cosmology and Astroparticle Physics; Journal Volume: 2017; Journal Issue: 10; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; COMPUTERIZED SIMULATION; DECAY; DETECTION; ENERGY SPECTRA; LIQUIDS; NONLUMINOUS MATTER; NUCLEI; NUCLEONS; SENSITIVITY; SPACE; STANDARD MODEL; WIMPS

Citation Formats

Butcher, Alistair, Kirk, Russell, Monroe, Jocelyn, and West, Stephen M., E-mail: Alistair.Butcher.2010@live.rhul.ac.uk, E-mail: Russell.Kirk.2008@live.rhul.ac.uk, E-mail: Jocelyn.Monroe@rhul.ac.uk, E-mail: Stephen.West@rhul.ac.uk. Can tonne-scale direct detection experiments discover nuclear dark matter?. United States: N. p., 2017. Web. doi:10.1088/1475-7516/2017/10/035.
Butcher, Alistair, Kirk, Russell, Monroe, Jocelyn, & West, Stephen M., E-mail: Alistair.Butcher.2010@live.rhul.ac.uk, E-mail: Russell.Kirk.2008@live.rhul.ac.uk, E-mail: Jocelyn.Monroe@rhul.ac.uk, E-mail: Stephen.West@rhul.ac.uk. Can tonne-scale direct detection experiments discover nuclear dark matter?. United States. doi:10.1088/1475-7516/2017/10/035.
Butcher, Alistair, Kirk, Russell, Monroe, Jocelyn, and West, Stephen M., E-mail: Alistair.Butcher.2010@live.rhul.ac.uk, E-mail: Russell.Kirk.2008@live.rhul.ac.uk, E-mail: Jocelyn.Monroe@rhul.ac.uk, E-mail: Stephen.West@rhul.ac.uk. Sun . "Can tonne-scale direct detection experiments discover nuclear dark matter?". United States. doi:10.1088/1475-7516/2017/10/035.
@article{osti_22667635,
title = {Can tonne-scale direct detection experiments discover nuclear dark matter?},
author = {Butcher, Alistair and Kirk, Russell and Monroe, Jocelyn and West, Stephen M., E-mail: Alistair.Butcher.2010@live.rhul.ac.uk, E-mail: Russell.Kirk.2008@live.rhul.ac.uk, E-mail: Jocelyn.Monroe@rhul.ac.uk, E-mail: Stephen.West@rhul.ac.uk},
abstractNote = {Models of nuclear dark matter propose that the dark sector contains large composite states consisting of dark nucleons in analogy to Standard Model nuclei. We examine the direct detection phenomenology of a particular class of nuclear dark matter model at the current generation of tonne-scale liquid noble experiments, in particular DEAP-3600 and XENON1T. In our chosen nuclear dark matter scenario distinctive features arise in the recoil energy spectra due to the non-point-like nature of the composite dark matter state. We calculate the number of events required to distinguish these spectra from those of a standard point-like WIMP state with a decaying exponential recoil spectrum. In the most favourable regions of nuclear dark matter parameter space, we find that a few tens of events are needed to distinguish nuclear dark matter from WIMPs at the 3 σ level in a single experiment. Given the total exposure time of DEAP-3600 and XENON1T we find that at best a 2 σ distinction is possible by these experiments individually, while 3 σ sensitivity is reached for a range of parameters by the combination of the two experiments. We show that future upgrades of these experiments have potential to distinguish a large range of nuclear dark matter models from that of a WIMP at greater than 3 σ .},
doi = {10.1088/1475-7516/2017/10/035},
journal = {Journal of Cosmology and Astroparticle Physics},
number = 10,
volume = 2017,
place = {United States},
year = {Sun Oct 01 00:00:00 EDT 2017},
month = {Sun Oct 01 00:00:00 EDT 2017}
}