skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: THERMAL CHARACTERISTICS AND THE DIFFERENTIAL EMISSION MEASURE DISTRIBUTION DURING A B8.3 FLARE ON 2009 JULY 4

Journal Article · · Astrophysical Journal
 [1]; ;  [2];  [3]
  1. Astronomical Institute, University of Wroclaw, Wroclaw (Poland)
  2. Solar Physics Division, Space Research Centre, Polish Academy of Sciences, Wroclaw (Poland)
  3. Kadi Sarva Vishwavidyalaya, Gandhinagar, Gujarat (India)

We investigate the evolution of the differential emission measure distribution (DEM[ T ]) in various phases of a B8.3 flare which occurred on 2009 July 04. We analyze the soft X-ray (SXR) emission in the 1.6–8.0 keV range, recorded collectively by the Solar Photometer in X-rays (SphinX; Polish) and the Solar X-ray Spectrometer (Indian) instruments. We conduct a comparative investigation of the best-fit DEM[ T ] distributions derived by employing various inversion schemes, namely, single Gaussian, power-law functions and a Withbroe–Sylwester (W–S) maximum likelihood algorithm. In addition, the SXR spectrum in three different energy bands, that is, 1.6–5.0 keV (low), 5.0–8.0 keV (high), and 1.6–8.0 keV (combined), is analyzed to determine the dependence of the best-fit DEM[ T ] distribution on the selection of the energy interval. The evolution of the DEM[ T ] distribution, derived using a W–S algorithm, reveals multi-thermal plasma during the rise to the maximum phase of the flare, and isothermal plasma in the post-maximum phase of the flare. The thermal energy content is estimated by considering the flare plasma to be (1) isothermal and (2) multi-thermal in nature. We find that the energy content during the flare, estimated using the multi-thermal approach, is in good agreement with that derived using the isothermal assumption, except during the flare maximum. Furthermore, the (multi-) thermal energy estimated while employing the low-energy band of the SXR spectrum results in higher values than that derived from the combined energy band. On the contrary, the analysis of the high-energy band of the SXR spectrum leads to lower thermal energy than that estimated from the combined energy band.

OSTI ID:
22666222
Journal Information:
Astrophysical Journal, Vol. 823, Issue 2; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 0004-637X
Country of Publication:
United States
Language:
English