skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: THE EFFECT OF TRANSIENT ACCRETION ON THE SPIN-UP OF MILLISECOND PULSARS

Abstract

A millisecond pulsar is a neutron star that has been substantially spun up by accretion from a binary companion. A previously unrecognized factor governing the spin evolution of such pulsars is the crucial effect of nonsteady or transient accretion. We numerically compute the evolution of accreting neutron stars through a series of outburst and quiescent phases, considering the drastic variation of the accretion rate and the standard disk–magnetosphere interaction. We find that, for the same long-term average accretion rate, X-ray transients can spin up pulsars to rates several times higher than can persistent accretors, even when the spin-down due to electromagnetic radiation during quiescence is included. We also compute an analytical expression for the equilibrium spin frequency in transients, by taking spin equilibrium to mean that no net angular momentum is transferred to the neutron star in each outburst cycle. We find that the equilibrium spin rate for transients, which depends on the peak accretion rate during outbursts, can be much higher than that for persistent sources. This explains our numerical finding. This finding implies that any meaningful study of neutron star spin and magnetic field distributions requires the inclusion of the transient accretion effect, since most accreting neutron starmore » sources are transients. Our finding also implies the existence of a submillisecond pulsar population, which is not observed. This may point to the need for a competing spin-down mechanism for the fastest-rotating accreting pulsars, such as gravitational radiation.« less

Authors:
;  [1]
  1. Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Colaba, Mumbai 400005 (India)
Publication Date:
OSTI Identifier:
22664035
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 835; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ACCRETION DISKS; DISTRIBUTION; EQUILIBRIUM; EVOLUTION; GRAVITATIONAL RADIATION; INCLUSIONS; INTERACTIONS; MAGNETIC FIELDS; NEUTRON STARS; PULSARS; ROTATION; SPIN; VARIATIONS; X RADIATION

Citation Formats

Bhattacharyya, Sudip, and Chakrabarty, Deepto, E-mail: sudip@tifr.res.in. THE EFFECT OF TRANSIENT ACCRETION ON THE SPIN-UP OF MILLISECOND PULSARS. United States: N. p., 2017. Web. doi:10.3847/1538-4357/835/1/4.
Bhattacharyya, Sudip, & Chakrabarty, Deepto, E-mail: sudip@tifr.res.in. THE EFFECT OF TRANSIENT ACCRETION ON THE SPIN-UP OF MILLISECOND PULSARS. United States. doi:10.3847/1538-4357/835/1/4.
Bhattacharyya, Sudip, and Chakrabarty, Deepto, E-mail: sudip@tifr.res.in. Fri . "THE EFFECT OF TRANSIENT ACCRETION ON THE SPIN-UP OF MILLISECOND PULSARS". United States. doi:10.3847/1538-4357/835/1/4.
@article{osti_22664035,
title = {THE EFFECT OF TRANSIENT ACCRETION ON THE SPIN-UP OF MILLISECOND PULSARS},
author = {Bhattacharyya, Sudip and Chakrabarty, Deepto, E-mail: sudip@tifr.res.in},
abstractNote = {A millisecond pulsar is a neutron star that has been substantially spun up by accretion from a binary companion. A previously unrecognized factor governing the spin evolution of such pulsars is the crucial effect of nonsteady or transient accretion. We numerically compute the evolution of accreting neutron stars through a series of outburst and quiescent phases, considering the drastic variation of the accretion rate and the standard disk–magnetosphere interaction. We find that, for the same long-term average accretion rate, X-ray transients can spin up pulsars to rates several times higher than can persistent accretors, even when the spin-down due to electromagnetic radiation during quiescence is included. We also compute an analytical expression for the equilibrium spin frequency in transients, by taking spin equilibrium to mean that no net angular momentum is transferred to the neutron star in each outburst cycle. We find that the equilibrium spin rate for transients, which depends on the peak accretion rate during outbursts, can be much higher than that for persistent sources. This explains our numerical finding. This finding implies that any meaningful study of neutron star spin and magnetic field distributions requires the inclusion of the transient accretion effect, since most accreting neutron star sources are transients. Our finding also implies the existence of a submillisecond pulsar population, which is not observed. This may point to the need for a competing spin-down mechanism for the fastest-rotating accreting pulsars, such as gravitational radiation.},
doi = {10.3847/1538-4357/835/1/4},
journal = {Astrophysical Journal},
number = 1,
volume = 835,
place = {United States},
year = {Fri Jan 20 00:00:00 EST 2017},
month = {Fri Jan 20 00:00:00 EST 2017}
}
  • This paper examines the limits on the number of millisecond pulsars which could be formed in globular clusters by the generally accepted scenario (in which a neutron star is created by the supernova of an initially massive star and subsequently captures a companion to form a low-mass X-ray binary which eventually becomes a millisecond pulsar). It is found that, while the number of observed low-mass X-ray binaries can be adequately explained in this way, the reasonable assumption that the pulsar luminosity function in clusters extends below the current observational limits down to the luminosity of the faintest millisecond pulsars inmore » the field suggests a cluster population of millisecond pulsars which is substantially larger than the standard model can produce. Alleviating this problem by postulating much shorter lifetimes for the X-ray binaries requires massive star populations sufficiently large that the mass loss resulting from their evolution would be likely to unbind the cluster. It is argued that neutron star formation in globular clusters by accretion-induced collapse of white dwarfs may resolve the discrepancy in birthrates. 91 refs.« less
  • Pulsars with pulsation periods in the millisecond range are thought to be neutron stars that have acquired an extraordinarily short spin period through the accretion of stellar material spiraling down onto the neutron star from a nearby companion. Nearly all the angular momentum and most of the mass of the companion star is transferred to the neutron star. During this process, wherein the neutron star consumes its companion, it is required that a disk of stellar material be formed around the neutron star. In conventional models it is supposed that the disk is somehow lost when the accretion phase ismore » finished, so that only the rapidly spinning neutron star remains. However, it is possible that, after the accretion phase, a residual disk remains in stable orbit around the neutron star. The end result of such an accretion process is an object that looks much like a miniature (about 100 kilometers), heavy version of Saturn: a central object (the neutron star) surrounded by a durable disk. 10 references.« less
  • The heating associated with the deposition of {gamma}-rays in an accretion disk is proposed as a mechanism to facilitate the transformation of a low-mass X-ray binary to the radio millisecond pulsar (MSP) phase. The {gamma}-ray emission produced in the outer gap accelerator in the pulsar magnetosphere likely irradiates the surrounding disk, resulting in its heating and the possible escape of matter from the system. We apply the model to PSR J1023+0038, which has recently been discovered as a newly born rotation-powered MSP. The predicted {gamma}-ray luminosity {approx}6 x 10{sup 34} erg s{sup -1} can be sufficient to explain the disappearancemore » of the truncated disk existing during the 8 month-2 yr period prior to the 2002 observations of J1023+0038 and the energy input required for the anomalously bright optical emission of its companion star.« less
  • Accretion-induced collapse (AIC) of massive white dwarfs (WDs) has been proposed to be an important channel to form binary millisecond pulsars (MSPs). Recent investigations on thermal timescale mass transfer in WD binaries demonstrate that the resultant MSPs are likely to have relatively wide orbit periods (≳ 10 days). Here we calculate the evolution of WD binaries taking into account the excited wind from the companion star induced by X-ray irradiation of the accreting WD, which may drive rapid mass transfer even when the companion star is less massive than the WD. This scenario can naturally explain the formation of themore » strong-field neutron star in the low-mass X-ray binary 4U 1822–37. After AIC the mass transfer resumes when the companion star refills its Roche lobe, and the neutron star is recycled owing to mass accretion. A large fraction of the binaries will evolve to become binary MSPs with an He WD companion, with the orbital periods distributed between ≳ 0.1 days and ≲ 30 days, while some of them may follow the cataclysmic variable-like evolution toward very short orbits. If we instead assume that the newborn neutron star appears as an MSP and that part of its rotational energy is used to ablate its companion star, the binaries may also evolve to be the redback-like systems.« less
  • Redback millisecond pulsars (MSPs; hereafter redbacks) are a subpopulation of eclipsing MSPs in close binaries. The formation processes of these systems are not clear. The three pulsars showing transitions between rotation- and accretion-powered states belong to both redbacks and transient low-mass X-ray binaries (LMXBs), suggesting a possible evolutionary link between them. Through binary evolution calculations, we show that the accretion disks in almost all LMXBs are subject to the thermal-viscous instability during certain evolutionary stages, and the parameter space for the disk instability covers the distribution of known redbacks in the orbital period—companion mass plane. We accordingly suggest that themore » abrupt reduction of the mass accretion rate during quiescence of transient LMXBs provides a plausible way to switch on the pulsar activity, leading to the formation of redbacks, if the neutron star has been spun up to be an energetic MSP. We investigate the evolution of redbacks, taking into account the evaporation feedback, and discuss its possible influence on the formation of black widow MSPs.« less