skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: HESS J1427−608: AN UNUSUAL HARD, UNBROKEN γ -RAY SPECTRUM IN A VERY WIDE ENERGY RANGE

Abstract

We report the detection of a GeV γ -ray source that spatially overlaps and is thus very likely associated with the unidentified very high energy (VHE) γ -ray source HESS J1427−608 with the Pass 8 data recorded by the Fermi Large Area Telescope . The photon spectrum of this source is best described by a power law with an index of 1.85 ± 0.17 in the energy range of 3–500 GeV, and the measured flux connects smoothly with that of HESS J1427−608 at a few hundred gigaelectronvolts. This source shows no significant extension and time variation. The broadband GeV to TeV emission over four decades of energies can be well fitted by a single power-law function with an index of 2.0, without obvious indication of spectral cutoff toward high energies. Such a result implies that HESS J1427−608 may be a PeV particle accelerator. We discuss the possible nature of HESS J1427−608 according to the multiwavelength spectral fittings. Given the relatively large errors, either a leptonic or a hadronic model can explain the multiwavelength data from radio to VHE γ -rays. The inferred magnetic field strength is a few micro-Gauss, which is smaller than the typical values of supernova remnants (SNRs)more » and is consistent with some pulsar wind nebulae (PWNe). On the other hand, the flat γ -ray spectrum is slightly different from typical PWNe but is similar to that of some known SNRs.« less

Authors:
;  [1]; ; ; ; ; ;  [2]
  1. Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210046 (China)
  2. Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)
Publication Date:
OSTI Identifier:
22664029
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 835; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ACCELERATORS; COSMIC GAMMA SOURCES; DETECTION; EMISSION; GAMMA RADIATION; GAMMA SOURCES; GAMMA SPECTRA; GEV RANGE; MAGNETIC FIELDS; NEBULAE; PEV RANGE; PHOTONS; PULSARS; SUPERNOVA REMNANTS; TELESCOPES; TEV RANGE; VARIATIONS

Citation Formats

Guo, Xiao-Lei, Gao, Wei-Hong, Xin, Yu-Liang, Liao, Neng-Hui, Yuan, Qiang, He, Hao-Ning, Fan, Yi-Zhong, and Liu, Si-Ming, E-mail: yuanq@pmo.ac.cn, E-mail: gaoweihong@njnu.edu.cn, E-mail: liusm@pmo.ac.cn. HESS J1427−608: AN UNUSUAL HARD, UNBROKEN γ -RAY SPECTRUM IN A VERY WIDE ENERGY RANGE. United States: N. p., 2017. Web. doi:10.3847/1538-4357/835/1/42.
Guo, Xiao-Lei, Gao, Wei-Hong, Xin, Yu-Liang, Liao, Neng-Hui, Yuan, Qiang, He, Hao-Ning, Fan, Yi-Zhong, & Liu, Si-Ming, E-mail: yuanq@pmo.ac.cn, E-mail: gaoweihong@njnu.edu.cn, E-mail: liusm@pmo.ac.cn. HESS J1427−608: AN UNUSUAL HARD, UNBROKEN γ -RAY SPECTRUM IN A VERY WIDE ENERGY RANGE. United States. doi:10.3847/1538-4357/835/1/42.
Guo, Xiao-Lei, Gao, Wei-Hong, Xin, Yu-Liang, Liao, Neng-Hui, Yuan, Qiang, He, Hao-Ning, Fan, Yi-Zhong, and Liu, Si-Ming, E-mail: yuanq@pmo.ac.cn, E-mail: gaoweihong@njnu.edu.cn, E-mail: liusm@pmo.ac.cn. Fri . "HESS J1427−608: AN UNUSUAL HARD, UNBROKEN γ -RAY SPECTRUM IN A VERY WIDE ENERGY RANGE". United States. doi:10.3847/1538-4357/835/1/42.
@article{osti_22664029,
title = {HESS J1427−608: AN UNUSUAL HARD, UNBROKEN γ -RAY SPECTRUM IN A VERY WIDE ENERGY RANGE},
author = {Guo, Xiao-Lei and Gao, Wei-Hong and Xin, Yu-Liang and Liao, Neng-Hui and Yuan, Qiang and He, Hao-Ning and Fan, Yi-Zhong and Liu, Si-Ming, E-mail: yuanq@pmo.ac.cn, E-mail: gaoweihong@njnu.edu.cn, E-mail: liusm@pmo.ac.cn},
abstractNote = {We report the detection of a GeV γ -ray source that spatially overlaps and is thus very likely associated with the unidentified very high energy (VHE) γ -ray source HESS J1427−608 with the Pass 8 data recorded by the Fermi Large Area Telescope . The photon spectrum of this source is best described by a power law with an index of 1.85 ± 0.17 in the energy range of 3–500 GeV, and the measured flux connects smoothly with that of HESS J1427−608 at a few hundred gigaelectronvolts. This source shows no significant extension and time variation. The broadband GeV to TeV emission over four decades of energies can be well fitted by a single power-law function with an index of 2.0, without obvious indication of spectral cutoff toward high energies. Such a result implies that HESS J1427−608 may be a PeV particle accelerator. We discuss the possible nature of HESS J1427−608 according to the multiwavelength spectral fittings. Given the relatively large errors, either a leptonic or a hadronic model can explain the multiwavelength data from radio to VHE γ -rays. The inferred magnetic field strength is a few micro-Gauss, which is smaller than the typical values of supernova remnants (SNRs) and is consistent with some pulsar wind nebulae (PWNe). On the other hand, the flat γ -ray spectrum is slightly different from typical PWNe but is similar to that of some known SNRs.},
doi = {10.3847/1538-4357/835/1/42},
journal = {Astrophysical Journal},
number = 1,
volume = 835,
place = {United States},
year = {Fri Jan 20 00:00:00 EST 2017},
month = {Fri Jan 20 00:00:00 EST 2017}
}
  • This Letter reports the discovery of a remarkably hard spectrum source, HESS J1641–463, by the High Energy Stereoscopic System (H.E.S.S.) in the very high energy (VHE) domain. HESS J1641–463 remained unnoticed by the usual analysis techniques due to confusion with the bright nearby source HESS J1640–465. It emerged at a significance level of 8.5 standard deviations after restricting the analysis to events with energies above 4 TeV. It shows a moderate flux level of φ(E>1 TeV) = (3.64 ± 0.44{sub stat} ± 0.73{sub sys}) × 10{sup –13} cm{sup –2} s{sup –1}, corresponding to 1.8% of the Crab Nebula flux above the same energy, andmore » a hard spectrum with a photon index of Γ = 2.07 ± 0.11{sub stat} ± 0.20{sub sys}. It is a point-like source, although an extension up to a Gaussian width of σ = 3 arcmin cannot be discounted due to uncertainties in the H.E.S.S. point-spread function. The VHE γ-ray flux of HESS J1641–463 is found to be constant over the observed period when checking time binnings from the year-by-year to the 28 minute exposure timescales. HESS J1641–463 is positionally coincident with the radio supernova remnant SNR G338.5+0.1. No X-ray candidate stands out as a clear association; however, Chandra and XMM-Newton data reveal some potential weak counterparts. Various VHE γ-ray production scenarios are discussed. If the emission from HESS J1641–463 is produced by cosmic ray protons colliding with the ambient gas, then their spectrum must extend close to 1 PeV. This object may represent a source population contributing significantly to the galactic cosmic ray flux around the knee.« less
  • The occasional hardening of the GeV-to-TeV spectrum observed from the blazar Mrk 501 has reopened the debate on the physical origin of radiation and particle acceleration processes in TeV blazars. We have used the ∼7 years of Fermi -LAT data to search for the time intervals with unusually hard spectra from the nearby TeV blazar Mrk 501. We detected hard spectral components above 10 GeV with photon index <1.5 at a significance level of more than 5 sigma on 17 occasions, each with 30 day integration time. The photon index of the hardest component reached a value of 0.89 ± 0.29. We interpretmore » these hard spectra as signatures of intermittent injection of sharply peaked and localized particle distributions from the base of the jet.« less
  • We present X-ray observations of the as of yet unidentified very high-energy (VHE) {gamma}-ray source HESS J1640-465 with the aim of establishing a counterpart of this source in the keV energy range, and identifying the mechanism responsible for the VHE emission. The 21.8 ksec XMM-Newton observation of HESS J1640-465 in September 2005 represents a significant improvement in sensitivity and angular resolution over previous ASCA studies in this region. These new data show a hard-spectrum X-ray emitting object at the centroid of the H.E.S.S. source, within the shell of the radio Supernova Remnant (SNR) G338.3-0.0. This object is consistent with themore » position and flux previously measured by both ASCA and Swift-XRT but is now shown to be significantly extended. We argue that this object is very likely the counterpart to HESS J1640-465 and that both objects may represent the Pulsar Wind Nebula of an as of yet undiscovered pulsar associated with G338.3-0.0.« less
  • Recent data from the Fermi Large Area Telescope have revealed about a dozen distant hard-spectrum blazars that have very-high-energy (VHE; {approx}> 100 GeV) photons associated with them, but most of them have not yet been detected by imaging atmospheric Cherenkov Telescopes. Most of these high-energy gamma-ray spectra, like those of other extreme high-frequency peaked BL Lac objects, can be well explained either by gamma rays emitted at the source or by cascades induced by ultra-high-energy cosmic rays, as we show specifically for KUV 00311-1938. We consider the prospects for detection of the VHE sources by the planned Cherenkov Telescope Arraymore » (CTA) and show how it can distinguish the two scenarios by measuring the integrated flux above {approx}500 GeV (depending on source redshift) for several luminous sources with z {approx}< 1 in the sample. Strong evidence for the origin of ultra-high-energy cosmic rays could be obtained from VHE observations with CTA. Depending on redshift, if the often quoted redshift of KUV 00311-1938 (z = 0.61) is believed, then preliminary H.E.S.S. data favor cascades induced by ultra-high-energy cosmic rays. Accurate redshift measurements of hard-spectrum blazars are essential for this study.« less
  • We show that recent data from the Fermi Large Area Telescope have revealed about a dozen distant hard-spectrum blazars that have very-high-energy (VHE; ≳ 100 eV) photons associated with them, but most of them have not yet been detected by imaging atmospheric Cherenkov Telescopes. Most of these high-energy gamma-ray spectra, like those of other extreme high-frequency peaked BL Lac objects, can be well explained either by gamma rays emitted at the source or by cascades induced by ultra-high-energy cosmic rays, as we show specifically for KUV 00311–1938. We consider the prospects for detection of the VHE sources by the plannedmore » Cherenkov Telescope Array (CTA) and show how it can distinguish the two scenarios by measuring the integrated flux above ~500 GeV (depending on source redshift) for several luminous sources with z ≲ 1 in the sample. Strong evidence for the origin of ultra-high-energy cosmic rays could be obtained from VHE observations with CTA. Depending on redshift, if the often quoted redshift of KUV 00311–1938 (z = 0.61) is believed, then preliminary H.E.S.S. data favor cascades induced by ultra-high-energy cosmic rays. Lastly, accurate redshift measurements of hard-spectrum blazars are essential for this study.« less