skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dynamical and Radiative Properties of X-Ray Pulsar Accretion Columns: Phase-averaged Spectra

Abstract

The availability of the unprecedented spectral resolution provided by modern X-ray observatories is opening up new areas for study involving the coupled formation of the continuum emission and the cyclotron absorption features in accretion-powered X-ray pulsar spectra. Previous research focusing on the dynamics and the associated formation of the observed spectra has largely been confined to the single-fluid model, in which the super-Eddington luminosity inside the column decelerates the flow to rest at the stellar surface, while the dynamical effect of gas pressure is ignored. In a companion paper, we have presented a detailed analysis of the hydrodynamic and thermodynamic structure of the accretion column obtained using a new self-consistent model that includes the effects of both gas and radiation pressures. In this paper, we explore the formation of the associated X-ray spectra using a rigorous photon transport equation that is consistent with the hydrodynamic and thermodynamic structure of the column. We use the new model to obtain phase-averaged spectra and partially occulted spectra for Her X-1, Cen X-3, and LMC X-4. We also use the new model to constrain the emission geometry, and compare the resulting parameters with those obtained using previously published models. Our model sheds new lightmore » on the structure of the column, the relationship between the ionized gas and the photons, the competition between diffusive and advective transport, and the magnitude of the energy-averaged cyclotron scattering cross-section.« less

Authors:
 [1];  [2];  [3]
  1. Department of Electrical and Computer Engineering, United States Naval Academy, Annapolis, MD (United States)
  2. Naval Research Laboratory (retired), Washington, DC (United States)
  3. Department of Physics and Astronomy, George Mason University, Fairfax, VA (United States)
Publication Date:
OSTI Identifier:
22663916
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 835; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ABSORPTION; ACCRETION DISKS; CROSS SECTIONS; CYCLOTRONS; EMISSION; HYDRODYNAMICS; LUMINOSITY; PHOTON TRANSPORT; PULSARS; RADIANT HEAT TRANSFER; RADIATION PRESSURE; RESOLUTION; SCATTERING; SHOCK WAVES; SURFACES; THERMODYNAMICS; TRANSPORT THEORY; VISIBLE RADIATION; X RADIATION; X-RAY SPECTRA

Citation Formats

West, Brent F., Wolfram, Kenneth D., and Becker, Peter A., E-mail: bwest@usna.edu, E-mail: kswolfram@gmail.com, E-mail: pbecker@gmu.edu. Dynamical and Radiative Properties of X-Ray Pulsar Accretion Columns: Phase-averaged Spectra. United States: N. p., 2017. Web. doi:10.3847/1538-4357/835/2/130.
West, Brent F., Wolfram, Kenneth D., & Becker, Peter A., E-mail: bwest@usna.edu, E-mail: kswolfram@gmail.com, E-mail: pbecker@gmu.edu. Dynamical and Radiative Properties of X-Ray Pulsar Accretion Columns: Phase-averaged Spectra. United States. doi:10.3847/1538-4357/835/2/130.
West, Brent F., Wolfram, Kenneth D., and Becker, Peter A., E-mail: bwest@usna.edu, E-mail: kswolfram@gmail.com, E-mail: pbecker@gmu.edu. Wed . "Dynamical and Radiative Properties of X-Ray Pulsar Accretion Columns: Phase-averaged Spectra". United States. doi:10.3847/1538-4357/835/2/130.
@article{osti_22663916,
title = {Dynamical and Radiative Properties of X-Ray Pulsar Accretion Columns: Phase-averaged Spectra},
author = {West, Brent F. and Wolfram, Kenneth D. and Becker, Peter A., E-mail: bwest@usna.edu, E-mail: kswolfram@gmail.com, E-mail: pbecker@gmu.edu},
abstractNote = {The availability of the unprecedented spectral resolution provided by modern X-ray observatories is opening up new areas for study involving the coupled formation of the continuum emission and the cyclotron absorption features in accretion-powered X-ray pulsar spectra. Previous research focusing on the dynamics and the associated formation of the observed spectra has largely been confined to the single-fluid model, in which the super-Eddington luminosity inside the column decelerates the flow to rest at the stellar surface, while the dynamical effect of gas pressure is ignored. In a companion paper, we have presented a detailed analysis of the hydrodynamic and thermodynamic structure of the accretion column obtained using a new self-consistent model that includes the effects of both gas and radiation pressures. In this paper, we explore the formation of the associated X-ray spectra using a rigorous photon transport equation that is consistent with the hydrodynamic and thermodynamic structure of the column. We use the new model to obtain phase-averaged spectra and partially occulted spectra for Her X-1, Cen X-3, and LMC X-4. We also use the new model to constrain the emission geometry, and compare the resulting parameters with those obtained using previously published models. Our model sheds new light on the structure of the column, the relationship between the ionized gas and the photons, the competition between diffusive and advective transport, and the magnitude of the energy-averaged cyclotron scattering cross-section.},
doi = {10.3847/1538-4357/835/2/130},
journal = {Astrophysical Journal},
number = 2,
volume = 835,
place = {United States},
year = {Wed Feb 01 00:00:00 EST 2017},
month = {Wed Feb 01 00:00:00 EST 2017}
}
  • Previous research centered on the hydrodynamics in X-ray pulsar accretion columns has largely focused on the single-fluid model, in which the super-Eddington luminosity inside the column decelerates the flow to rest at the stellar surface. This type of model has been relatively successful in describing the overall properties of the accretion flows, but it does not account for the possible dynamical effect of the gas pressure. On the other hand, the most successful radiative transport models for pulsars generally do not include a rigorous treatment of the dynamical structure of the column, instead assuming an ad hoc velocity profile. Inmore » this paper, we explore the structure of X-ray pulsar accretion columns using a new, self-consistent, “two-fluid” model, which incorporates the dynamical effect of the gas and radiation pressures, the dipole variation of the magnetic field, the thermodynamic effect of all of the relevant coupling and cooling processes, and a rigorous set of physical boundary conditions. The model has six free parameters, which we vary in order to approximately fit the phase-averaged spectra in Her X-1, Cen X-3, and LMC X-4. In this paper, we focus on the dynamical results, which shed new light on the surface magnetic field strength, the inclination of the magnetic field axis relative to the rotation axis, the relative importance of gas and radiation pressures, and the radial variation of the ion, electron, and inverse-Compton temperatures. The results obtained for the X-ray spectra are presented in a separate paper.« less
  • After at least six years of quiescence, anomalous X-ray pulsar (AXP) 4U 0142+61 entered an active phase in 2006 March that lasted several months and included six X-ray bursts as well as many changes in the persistent X-ray emission. The bursts, the first seen from this AXP in >11 yr of Rossi X-Ray Timing Explorer monitoring, all occurred in the interval between 2006 April 6 and 2007 February 7. The burst durations ranged from (0.4-1.8) x 10{sup 3} s. The first five burst spectra are well modeled by blackbodies, with temperatures kT {approx} 2-9 keV. However, the sixth burst hadmore » a complicated spectrum that is well characterized by a blackbody plus two emission features whose amplitude varied throughout the burst. The most prominent feature was at 14.0 keV. Upon entry into the active phase, the pulsar showed a significant change in pulse morphology and a likely timing glitch. The glitch had a total frequency jump of (1.9 {+-} 0.4) x 10{sup -7} Hz, which recovered with a decay time of 17 {+-} 2 days by more than the initial jump, implying a net spin-down of the pulsar. Within the framework of the magnetar model, the net spin-down of the star could be explained by regions of the superfluid that rotate slower than the rest. The bursts, flux enhancements, and pulse morphology changes can be explained as arising from crustal deformations due to stresses imposed by the highly twisted internal magnetic field. However, unlike other AXP outbursts, we cannot account for a major twist being implanted in the magnetosphere.« less
  • In a dynamical-radiative model we recently developed to describe the physics of compact, GHz-Peaked-Spectrum (GPS) sources, the relativistic jets propagate across the inner, kpc-sized region of the host galaxy, while the electron population of the expanding lobes evolves and emits synchrotron and inverse-Compton (IC) radiation. Interstellar-medium gas clouds engulfed by the expanding lobes, and photoionized by the active nucleus, are responsible for the radio spectral turnover through free-free absorption (FFA) of the synchrotron photons. The model provides a description of the evolution of the GPS spectral energy distribution (SED) with the source expansion, predicting significant and complex high-energy emission, frommore » the X-ray to the {gamma}-ray frequency domain. Here, we test this model with the broad-band SEDs of a sample of eleven X-ray emitting GPS galaxies with Compact-Symmetric-Object (CSO) morphology, and show that: (i) the shape of the radio continuum at frequencies lower than the spectral turnover is indeed well accounted for by the FFA mechanism; (ii) the observed X-ray spectra can be interpreted as non-thermal radiation produced via IC scattering of the local radiation fields off the lobe particles, providing a viable alternative to the thermal, accretion-disk dominated scenario. We also show that the relation between the hydrogen column densities derived from the X-ray (N{sub H}) and radio (N{sub HI}) data of the sources is suggestive of a positive correlation, which, if confirmed by future observations, would provide further support to our scenario of high-energy emitting lobes.« less
  • In a dynamical-radiative model we recently developed to describe the physics of compact, GHz-peaked-spectrum (GPS) sources, the relativistic jets propagate across the inner, kpc-sized region of the host galaxy, while the electron population of the expanding lobes evolves and emits synchrotron and inverse-Compton (IC) radiation. Interstellar-medium gas clouds engulfed by the expanding lobes, and photoionized by the active nucleus, are responsible for the radio spectral turnover through free-free absorption (FFA) of the synchrotron photons. The model provides a description of the evolution of the spectral energy distribution (SED) of GPS sources with their expansion, predicting significant and complex high-energy emission,more » from the X-ray to the {gamma}-ray frequency domain. Here, we test this model with the broadband SEDs of a sample of 11 X-ray-emitting GPS galaxies with compact-symmetric-object morphology, and show that (1) the shape of the radio continuum at frequencies lower than the spectral turnover is indeed well accounted for by the FFA mechanism and (2) the observed X-ray spectra can be interpreted as non-thermal radiation produced via IC scattering of the local radiation fields off the lobe particles, providing a viable alternative to the thermal, accretion-disk-dominated scenario. We also show that the relation between the hydrogen column densities derived from the X-ray (N {sub H}) and radio (N {sub HI}) data of the sources is suggestive of a positive correlation, which, if confirmed by future observations, would provide further support to our scenario of high-energy emitting lobes.« less
  • The process of plasma accretion onto a neutron star with a strong magnetic field is considered. It is assumed that a substantial part of the gravitational energy of the gas being accreted can be released as radiation in the accretion column at a distance of a few radii from the star. The theory is consistent with observations of the x-ray pulsar. Her X-1, and predicts that the pulsar would have a supplementary source of soft ..gamma.. rays at energies Eapprox. =150 keV.