skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Measure the Propagation of a Halo CME and Its Driven Shock with the Observations from a Single Perspective at Earth

Abstract

We present a detailed study of an Earth-directed coronal mass ejection (full-halo CME) event that happened on 2011 February 15, making use of white-light observations by three coronagraphs and radio observations by Wind /WAVES. We applied three different methods to reconstruct the propagation direction and traveling distance of the CME and its driven shock. We measured the kinematics of the CME leading edge from white-light images observed by Solar Terrestrial Relations Observatory ( STEREO ) A and B , tracked the CME-driven shock using the frequency drift observed by Wind /WAVES together with an interplanetary density model, and obtained the equivalent scattering centers of the CME by the polarization ratio (PR) method. For the first time, we applied the PR method to different features distinguished from LASCO/C2 polarimetric observations and calculated their projections onto white-light images observed by STEREO-A and STEREO-B . By combining the graduated cylindrical shell (GCS) forward modeling with the PR method, we proposed a new GCS-PR method to derive 3D parameters of a CME observed from a single perspective at Earth. Comparisons between different methods show a good degree of consistence in the derived 3D results.

Authors:
; ;  [1];  [2];  [3]
  1. Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, 210008 Nanjing (China)
  2. Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)
  3. State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China)
Publication Date:
OSTI Identifier:
22663895
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 835; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; COMPARATIVE EVALUATIONS; CYLINDRICAL CONFIGURATION; DENSITY; DISTANCE; MASS; POLARIZATION; SCATTERING; SIMULATION; SOLAR CORONA; SUN; VISIBLE RADIATION

Citation Formats

Lu, Lei, Feng, Li, Liu, Siming, Inhester, Bernd, and Zhao, Xinhua, E-mail: lfeng@pmo.ac.cn, E-mail: inhester@mps.mpg.de. Measure the Propagation of a Halo CME and Its Driven Shock with the Observations from a Single Perspective at Earth. United States: N. p., 2017. Web. doi:10.3847/1538-4357/835/2/188.
Lu, Lei, Feng, Li, Liu, Siming, Inhester, Bernd, & Zhao, Xinhua, E-mail: lfeng@pmo.ac.cn, E-mail: inhester@mps.mpg.de. Measure the Propagation of a Halo CME and Its Driven Shock with the Observations from a Single Perspective at Earth. United States. doi:10.3847/1538-4357/835/2/188.
Lu, Lei, Feng, Li, Liu, Siming, Inhester, Bernd, and Zhao, Xinhua, E-mail: lfeng@pmo.ac.cn, E-mail: inhester@mps.mpg.de. Wed . "Measure the Propagation of a Halo CME and Its Driven Shock with the Observations from a Single Perspective at Earth". United States. doi:10.3847/1538-4357/835/2/188.
@article{osti_22663895,
title = {Measure the Propagation of a Halo CME and Its Driven Shock with the Observations from a Single Perspective at Earth},
author = {Lu, Lei and Feng, Li and Liu, Siming and Inhester, Bernd and Zhao, Xinhua, E-mail: lfeng@pmo.ac.cn, E-mail: inhester@mps.mpg.de},
abstractNote = {We present a detailed study of an Earth-directed coronal mass ejection (full-halo CME) event that happened on 2011 February 15, making use of white-light observations by three coronagraphs and radio observations by Wind /WAVES. We applied three different methods to reconstruct the propagation direction and traveling distance of the CME and its driven shock. We measured the kinematics of the CME leading edge from white-light images observed by Solar Terrestrial Relations Observatory ( STEREO ) A and B , tracked the CME-driven shock using the frequency drift observed by Wind /WAVES together with an interplanetary density model, and obtained the equivalent scattering centers of the CME by the polarization ratio (PR) method. For the first time, we applied the PR method to different features distinguished from LASCO/C2 polarimetric observations and calculated their projections onto white-light images observed by STEREO-A and STEREO-B . By combining the graduated cylindrical shell (GCS) forward modeling with the PR method, we proposed a new GCS-PR method to derive 3D parameters of a CME observed from a single perspective at Earth. Comparisons between different methods show a good degree of consistence in the derived 3D results.},
doi = {10.3847/1538-4357/835/2/188},
journal = {Astrophysical Journal},
number = 2,
volume = 835,
place = {United States},
year = {Wed Feb 01 00:00:00 EST 2017},
month = {Wed Feb 01 00:00:00 EST 2017}
}
  • We examine the structure, propagation, and expansion of the shock associated with the 2012 July 23 extreme coronal mass ejection. Characteristics of the shock determined from multi-point imaging observations are compared to in situ measurements at different locations and a complex radio type II burst, which according to our definition has multiple branches that may not all be fundamental-harmonic related. The white-light shock signature can be modeled reasonably well by a spherical structure and was expanding backward even on the opposite side of the Sun. The expansion of the shock, which was roughly self-similar after the first ∼1.5 hr frommore » launch, largely dominated over the translation of the shock center for the time period of interest. Our study also suggests a bow-shock morphology around the nose at later times due to the outward motion in combination with the expansion of the ejecta. The shock decayed and failed to reach Mercury in the backward direction and the Solar Terrestrial Relations Observatory B ( STEREO B ) and Venus in the lateral directions, as indicated by the imaging and in situ observations. The shock in the nose direction, however, may have persisted to the far outer heliosphere, with predicted impact on Dawn around 06:00 UT on July 25 and on Jupiter around 23:30 UT on July 27 by a magnetohydrodynamic model. The type II burst shows properties generally consistent with the spatial/temporal variations of the shock deduced from imaging and in situ observations. In particular, the low-frequency bands agree well with the in situ measurements of a very low density ahead of the shock at STEREO A .« less
  • We report on the determination of radial magnetic field strength in the heliocentric distance range from 6 to 120 solar radii (R {sub Sun }) using data from Coronagraph 2 (COR2) and Heliospheric Imager I (HI1) instruments on board the Solar Terrestrial Relations Observatory spacecraft following the standoff-distance method of Gopalswamy and Yashiro. We measured the shock standoff distance of the 2008 April 5 coronal mass ejection (CME) and determined the flux-rope curvature by fitting the three-dimensional shape of the CME using the Graduated Cylindrical Shell model. The radial magnetic field strength is computed from the Alfven speed and themore » density of the ambient medium. We also compare the derived magnetic field strength with in situ measurements made by the Helios spacecraft, which measured the magnetic field at the heliocentric distance range from 60 to 215 R {sub Sun }. We found that the radial magnetic field strength decreases from 28 mG at 6 R {sub Sun} to 0.17 mG at 120 R {sub Sun }. In addition, we found that the radial profile can be described by a power law.« less
  • Coronal mass ejections (CMEs) are the main driver of space weather. Therefore, a precise forecasting of their likely geo-effectiveness relies on an accurate tracking of their morphological and kinematical evolution throughout the interplanetary medium. However, single viewpoint observations require many assumptions to model the development of the features of CMEs. The most common hypotheses were those of radial propagation and self-similar expansion. The use of different viewpoints shows that, at least for some cases, those assumptions are no longer valid. From radial propagation, typical attributes that can now be confirmed to exist are over-expansion and/or rotation along the propagation axis.more » Understanding the 3D development and evolution of the CME features will help to establish the connection between remote and in situ observations, and hence help forecast space weather. We present an analysis of the morphological and kinematical evolution of a STEREO-B-directed CME on 2009 August 25-27. By means of a comprehensive analysis of remote imaging observations provided by the SOHO, STEREO, and SDO missions, and in situ measurements recorded by Wind, ACE, and MESSENGER, we prove in this paper that the event exhibits signatures of deflection, which are usually associated with changes in the direction of propagation and/or also with rotation. The interaction with other magnetic obstacles could act as a catalyst of deflection or rotation effects. We also propose a method to investigate the change of the CME tilt from the analysis of height-time direct measurements. If this method is validated in further work, it may have important implications for space weather studies because it will allow for inference of the interplanetary counterpart of the CME's orientation.« less
  • It is generally believed that fast coronal mass ejections (CMEs) can generate their associated shocks, which are characterized by faint structures ahead of CMEs in white-light coronagraph images. In this study, we examine whether the observational stand-off distance ratio, defined as the CME stand-off distance divided by its radius, can be explained by bow shock theories. Of 535 SOHO /LASCO CMEs (from 1996 to 2015) with speeds greater than 1000 km s{sup −1} and angular widths wider than 60°, we select 18 limb CMEs with the following conditions: (1) their Alfvénic Mach numbers are greater than one under Mann’s magneticmore » field and Saito’s density distributions; and (2) the shock structures ahead of the CMEs are well identified. We determine observational CME stand-off distance ratios by using brightness profiles from LASCO-C2 observations. We compare our estimates with theoretical stand-off distance ratios from gasdynamic (GD) and magnetohydrodynamic (MHD) theories. The main results are as follows. Under the GD theory, 39% (7/18) of the CMEs are explained in the acceptable ranges of adiabatic gamma ( γ ) and CME geometry. Under the MHD theory, all the events are well explained when we consider quasi-parallel MHD shocks with γ = 5/3. When we use polarized brightness (pB) measurements for coronal density distributions, we also find similar results: 8% (1/12) under GD theory and 100% (12/12) under MHD theory. Our results demonstrate that the bow shock relationships based on MHD theory are more suitable than those based on GD theory for analyzing CME-driven shock signatures.« less
  • We present a detailed study of the complete evolution of a coronal mass ejection (CME). We have tracked the evolution of both the ejecta and its shock, and further fit the evolution of the fronts to a simple but physics-based analytical model. This study focuses on the CME initiated on the Sun on 2012 July 12 and arriving at the Earth on 2012 July 14. Shock and ejecta fronts were observed by white light images, as well as in situ by the Advanced Composition Explorer satellite. We find that the propagation of the two fronts is not completely dependent uponmore » one another, but can each be modeled in the heliosphere with a drag model that assumes the dominant force of affecting CME evolution to be the aerodynamic drag force of the ambient solar wind. Results indicate that the CME ejecta front undergoes a more rapid deceleration than the shock front within 50 R {sub ☉} and therefore the propagation of the two fronts is not completely coupled in the heliosphere. Using the graduated cylindrical shell model, as well as data from time-elongation stack plots and in situ signatures, we show that the drag model can accurately describe the behavior of each front, but is more effective with the ejecta. We also show that without the in situ data, based on measurements out to 80 R {sub ☉} combined with the general values for drag model parameters, the arrival of both the shock and ejecta can be predicted within four hours of arrival.« less