skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: FORWARD AND INVERSE MODELING OF THE EMISSION AND TRANSMISSION SPECTRUM OF GJ 436B: INVESTIGATING METAL ENRICHMENT, TIDAL HEATING, AND CLOUDS

Abstract

The Neptune-mass GJ 436b is one of the most studied transiting exoplanets with repeated measurements of its thermal emission and transmission spectra. We build on previous studies to answer outstanding questions about this planet, including its potentially high metallicity and tidal heating of its interior. We present new observations of GJ 436b’s thermal emission at 3.6 and 4.5 μ m, which reduce uncertainties in estimates of GJ 436b’s flux at those wavelengths and demonstrate consistency between Spitzer observations spanning more than 7 yr. We analyze the Spitzer thermal emission photometry and Hubble WFC3 transmission spectrum. We use a dual-pronged modeling approach of both self-consistent and retrieval models. We vary the metallicity, intrinsic luminosity from tidal heating, disequilibrium chemistry, and heat redistribution. We also study clouds and photochemical hazes, but do not find strong evidence for either. The self-consistent and retrieval models combine to suggest that GJ 436b has a high atmospheric metallicity, with best fits at or above several hundred times solar metallicity, tidal heating warming its interior with best-fit intrinsic effective temperatures around 300–350 K, and disequilibrium chemistry. High metal enrichments (>600× solar) occur from the accretion of rocky, rather than icy, material. Assuming the interior temperature T {submore » int} ∼ 300–350 K, we find a dissipation factor Q ′ ∼ 2 × 10{sup 5}–10{sup 6}, larger than Neptune’s Q ′, implying a long tidal circularization timescale for the orbit. We suggest that Neptune-mass planets may be more diverse than imagined, with metal enhancements spanning several orders of magnitude, to perhaps over 1000× solar metallicity. High-fidelity observations with instruments like the James Webb Space Telescope will be critical for characterizing this diversity.« less

Authors:
 [1];  [2];  [3]; ;  [4];  [5]; ;  [6]
  1. Department of Astronomy, Harvard University, 60 Garden Street, Cambridge, MA 02138 (United States)
  2. Division of Geological and Planetary Sciences, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States)
  3. School of Earth and Space Exploration, Arizona State University, 781 South Terrace Road, Tempe, AZ 85281 (United States)
  4. Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States)
  5. Department of Physics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States)
  6. NASA Ames Research Center, Moffett Field, CA 94035 (United States)
Publication Date:
OSTI Identifier:
22663862
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astronomical Journal (Online); Journal Volume: 153; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; CLOUDS; DISSIPATION FACTOR; EMISSION; HEATING; LUMINOSITY; MASS; METALLICITY; METALS; NEPTUNE PLANET; ORBITS; PHOTOCHEMISTRY; PHOTOMETRY; SATELLITE ATMOSPHERES; SATELLITES; TELESCOPES; WAVELENGTHS

Citation Formats

Morley, Caroline V., Knutson, Heather, Line, Michael, Fortney, Jonathan J., Teal, Dillon, Thorngren, Daniel, Marley, Mark S., and Lupu, Roxana, E-mail: caroline.morley@cfa.harvard.edu. FORWARD AND INVERSE MODELING OF THE EMISSION AND TRANSMISSION SPECTRUM OF GJ 436B: INVESTIGATING METAL ENRICHMENT, TIDAL HEATING, AND CLOUDS. United States: N. p., 2017. Web. doi:10.3847/1538-3881/153/2/86.
Morley, Caroline V., Knutson, Heather, Line, Michael, Fortney, Jonathan J., Teal, Dillon, Thorngren, Daniel, Marley, Mark S., & Lupu, Roxana, E-mail: caroline.morley@cfa.harvard.edu. FORWARD AND INVERSE MODELING OF THE EMISSION AND TRANSMISSION SPECTRUM OF GJ 436B: INVESTIGATING METAL ENRICHMENT, TIDAL HEATING, AND CLOUDS. United States. doi:10.3847/1538-3881/153/2/86.
Morley, Caroline V., Knutson, Heather, Line, Michael, Fortney, Jonathan J., Teal, Dillon, Thorngren, Daniel, Marley, Mark S., and Lupu, Roxana, E-mail: caroline.morley@cfa.harvard.edu. Wed . "FORWARD AND INVERSE MODELING OF THE EMISSION AND TRANSMISSION SPECTRUM OF GJ 436B: INVESTIGATING METAL ENRICHMENT, TIDAL HEATING, AND CLOUDS". United States. doi:10.3847/1538-3881/153/2/86.
@article{osti_22663862,
title = {FORWARD AND INVERSE MODELING OF THE EMISSION AND TRANSMISSION SPECTRUM OF GJ 436B: INVESTIGATING METAL ENRICHMENT, TIDAL HEATING, AND CLOUDS},
author = {Morley, Caroline V. and Knutson, Heather and Line, Michael and Fortney, Jonathan J. and Teal, Dillon and Thorngren, Daniel and Marley, Mark S. and Lupu, Roxana, E-mail: caroline.morley@cfa.harvard.edu},
abstractNote = {The Neptune-mass GJ 436b is one of the most studied transiting exoplanets with repeated measurements of its thermal emission and transmission spectra. We build on previous studies to answer outstanding questions about this planet, including its potentially high metallicity and tidal heating of its interior. We present new observations of GJ 436b’s thermal emission at 3.6 and 4.5 μ m, which reduce uncertainties in estimates of GJ 436b’s flux at those wavelengths and demonstrate consistency between Spitzer observations spanning more than 7 yr. We analyze the Spitzer thermal emission photometry and Hubble WFC3 transmission spectrum. We use a dual-pronged modeling approach of both self-consistent and retrieval models. We vary the metallicity, intrinsic luminosity from tidal heating, disequilibrium chemistry, and heat redistribution. We also study clouds and photochemical hazes, but do not find strong evidence for either. The self-consistent and retrieval models combine to suggest that GJ 436b has a high atmospheric metallicity, with best fits at or above several hundred times solar metallicity, tidal heating warming its interior with best-fit intrinsic effective temperatures around 300–350 K, and disequilibrium chemistry. High metal enrichments (>600× solar) occur from the accretion of rocky, rather than icy, material. Assuming the interior temperature T {sub int} ∼ 300–350 K, we find a dissipation factor Q ′ ∼ 2 × 10{sup 5}–10{sup 6}, larger than Neptune’s Q ′, implying a long tidal circularization timescale for the orbit. We suggest that Neptune-mass planets may be more diverse than imagined, with metal enhancements spanning several orders of magnitude, to perhaps over 1000× solar metallicity. High-fidelity observations with instruments like the James Webb Space Telescope will be critical for characterizing this diversity.},
doi = {10.3847/1538-3881/153/2/86},
journal = {Astronomical Journal (Online)},
number = 2,
volume = 153,
place = {United States},
year = {Wed Feb 01 00:00:00 EST 2017},
month = {Wed Feb 01 00:00:00 EST 2017}
}
  • In this paper, we describe a uniform analysis of eight transits and eleven secondary eclipses of the extrasolar planet GJ 436b obtained in the 3.6, 4.5, and 8.0 {mu}m bands using the IRAC instrument on the Spitzer Space Telescope between UT 2007 June 29 and UT 2009 February 4. We find that the best-fit transit depths for visits in the same bandpass can vary by as much as 8% of the total (4.7{sigma} significance) from one epoch to the next. Although we cannot entirely rule out residual detector effects or a time-varying, high-altitude cloud layer in the planet's atmosphere asmore » the cause of these variations, we consider the occultation of active regions on the star in a subset of the transit observations to be the most likely explanation. We find that for the deepest 3.6 {mu}m transit the in-transit data have a higher standard deviation than the out-of-transit data, as would be expected if the planet occulted a star spot. We also compare all published transit observations for this object and find that transits observed in the infrared typically have smaller timing offsets than those observed in visible light. In this case, the three deepest Spitzer transits are all measured within a period of five days, consistent with a single epoch of increased stellar activity. We reconcile the presence of magnetically active regions with the lack of significant visible or infrared flux variations from the star by proposing that the star's spin axis is tilted with respect to our line of sight and that the planet's orbit is therefore likely to be misaligned. In contrast to the results reported by Beaulieu et al., we find no convincing evidence for methane absorption in the planet's transmission spectrum. If we exclude the transits that we believe to be most affected by stellar activity, we find that we prefer models with enhanced CO and reduced methane, consistent with GJ 436b's dayside composition from Stevenson et al. It is also possible that all transits are significantly affected by this activity, in which case it may not be feasible to characterize the planet's transmission spectrum using broadband photometry obtained over multiple epochs. These observations serve to illustrate the challenges associated with transmission spectroscopy of planets orbiting late-type stars; we expect that other systems, such as GJ 1214, may display comparably variable transit depths. We compare the limb-darkening coefficients predicted by PHOENIX and ATLAS stellar atmosphere models and discuss the effect that these coefficients have on the measured planet-star radius ratios given GJ 436b's near-grazing transit geometry. Our measured 8 {mu}m secondary eclipse depths are consistent with a constant value, and we place a 1{sigma} upper limit of 17% on changes in the planet's dayside flux in this band. These results are consistent with predictions from general circulation models for this planet, which find that the planet's dayside flux varies by a few percent or less in the 8 {mu}m band. Averaging over the eleven visits gives us an improved estimate of 0.0452% {+-} 0.0027% for the secondary eclipse depth; we also examine residuals from the eclipse ingress and egress and place an upper limit on deviations caused by a non-uniform surface brightness for GJ 436b. We combine timing information from our observations with previously published data to produce a refined orbital ephemeris and determine that the best-fit transit and eclipse times are consistent with a constant orbital period. We find that the secondary eclipse occurs at a phase of 0.58672 {+-} 0.00017, corresponding to ecos ({omega}) = 0.13754 {+-} 0.00027, where e is the planet's orbital eccentricity and {omega} is the longitude of pericenter. We also present improved estimates for other system parameters, including the orbital inclination, a/R{sub *}, and the planet-star radius ratio.« less
  • We explore the transmission spectrum of the Neptune-class exoplanet GJ 436b, including the possibility that its atmospheric opacity is dominated by a variety of nonequilibrium chemical products. We also validate our transmission code by demonstrating close agreement with analytic models that use only Rayleigh scattering or water vapor opacity. We find broad disagreement with radius variations predicted by another published model. For GJ 436b, the relative coolness of the planet's atmosphere, along with its implied high metallicity, may make it dissimilar in character compared to 'hot Jupiters'. Some recent observational and modeling efforts suggest low relative abundances of H{sub 2}Omore » and CH{sub 4} present in GJ 436b's atmosphere, compared to calculations from equilibrium chemistry. We include these characteristics in our models and examine the effects of absorption from methane-derived higher-order hydrocarbons. To our knowledge, the effects of these nonequilibrium chemical products on the spectra of close-in giant planets have not previously been investigated. Significant absorption from HCN and C{sub 2}H{sub 2} is found throughout the infrared, while C{sub 2}H{sub 4} and C{sub 2}H{sub 6} are less easily seen. We perform detailed simulations of James Webb Space Telescope observations, including all likely noise sources, and find that we will be able to constrain chemical abundance regimes from this planet's transmission spectrum. For instance, the width of the features at 1.5, 3.3, and 7 {mu}m indicates the amount of HCN versus C{sub 2}H{sub 2} present. The NIRSpec prism mode will be useful due to its large spectral range and the relatively large number of photo-electrons recorded per spectral resolution element. However, extremely bright host stars like GJ 436 may be better observed with a higher spectroscopic resolution mode in order to avoid detector saturation. We find that observations with the MIRI low-resolution spectrograph should also have high signal-to-noise in the 5-10 {mu}m range due to the brightness of the star and the relatively low spectral resolution (R {approx} 100) of this mode.« less
  • Recent observations of the super-Earth GJ 1214b show that it has a relatively featureless transmission spectrum. One suggestion is that these observations indicate that the planet's atmosphere is vertically compact, perhaps due to a water-rich composition that yields a large mean molecular weight. Another suggestion is that the atmosphere is hydrogen/helium-rich with clouds that obscure predicted absorption features. Previous models that incorporate clouds have included their effect without a strong physical motivation for their existence. Here, we present model atmospheres of GJ 1214b that include physically motivated clouds of two types. We model the clouds that are present in chemicalmore » equilibrium, as has been suggested to occur on brown dwarfs, which include KCl and ZnS for this planet. We also include clouds that form as a result of photochemistry, forming a hydrocarbon haze layer. We use a photochemical kinetics model to understand the vertical distribution and available mass of haze-forming molecules. We model both solar and enhanced-metallicity cloudy models and determine the cloud properties necessary to match observations. In enhanced-metallicity atmospheres, we find that the equilibrium clouds can match the observations of GJ 1214b if they are lofted high into the atmosphere and have a low sedimentation efficiency (f{sub sed} = 0.1). We find that models with a variety of hydrocarbon haze properties can match the observations. Particle sizes from 0.01 to 0.25 μm can match the transmission spectrum with haze-forming efficiencies as low as 1%-5%.« less
  • We present an investigation of the transmission spectrum of the 6.5 M{sub Circled-Plus} planet GJ 1214b based on new ground-based observations of transits of the planet in the optical and near-infrared, and on previously published data. Observations with the VLT + FORS and Magellan + MMIRS using the technique of multi-object spectroscopy with wide slits yielded new measurements of the planet's transmission spectrum from 0.61 to 0.85 {mu}m, and in the J, H, and K atmospheric windows. We also present a new measurement based on narrow-band photometry centered at 2.09 {mu}m with the VLT + HAWKI. We combined these datamore » with results from a reanalysis of previously published FORS data from 0.78 to 1.00 {mu}m using an improved data reduction algorithm, and previously reported values based on Spitzer data at 3.6 and 4.5 {mu}m. All of the data are consistent with a featureless transmission spectrum for the planet. Our K-band data are inconsistent with the detection of spectral features at these wavelengths reported by Croll and collaborators at the level of 4.1{sigma}. The planet's atmosphere must either have at least 70% H{sub 2}O by mass or optically thick high-altitude clouds or haze to be consistent with the data.« less
  • Neptune-sized extrasolar planets that orbit relatively close to their host stars—often called {sup h}ot Neptunes{sup —}are common within the known population of exoplanets and planetary candidates. Similar to our own Uranus and Neptune, inefficient accretion of nebular gas is expected produce hot Neptunes whose masses are dominated by elements heavier than hydrogen and helium. At high atmospheric metallicities of 10-10,000 times solar, hot Neptunes will exhibit an interesting continuum of atmospheric compositions, ranging from more Neptune-like, H{sub 2}-dominated atmospheres to more Venus-like, CO{sub 2}-dominated atmospheres. We explore the predicted equilibrium and disequilibrium chemistry of generic hot Neptunes and find thatmore » the atmospheric composition varies strongly as a function of temperature and bulk atmospheric properties such as metallicity and the C/O ratio. Relatively exotic H{sub 2}O, CO, CO{sub 2}, and even O{sub 2}-dominated atmospheres are possible for hot Neptunes. We apply our models to the case of GJ 436b, where we find that a CO-rich, CH{sub 4}-poor atmosphere can be a natural consequence of a very high atmospheric metallicity. From comparisons of our results with Spitzer eclipse data for GJ 436b, we conclude that although the spectral fit from the high-metallicity forward models is not quite as good as the best fit obtained from pure retrieval methods, the atmospheric composition predicted by these forward models is more physically and chemically plausible in terms of the relative abundance of major constituents. High-metallicity atmospheres (orders of magnitude in excess of solar) should therefore be considered as a possibility for GJ 436b and other hot Neptunes.« less