skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: GMC Collisions as Triggers of Star Formation. II. 3D Turbulent, Magnetized Simulations

Abstract

We investigate giant molecular cloud collisions and their ability to induce gravitational instability and thus star formation. This mechanism may be a major driver of star formation activity in galactic disks. We carry out a series of 3D, magnetohydrodynamics (MHD), adaptive mesh refinement simulations to study how cloud collisions trigger formation of dense filaments and clumps. Heating and cooling functions are implemented based on photo-dissociation region models that span the atomic-to-molecular transition and can return detailed diagnostic information. The clouds are initialized with supersonic turbulence and a range of magnetic field strengths and orientations. Collisions at various velocities and impact parameters are investigated. Comparing and contrasting colliding and non-colliding cases, we characterize morphologies of dense gas, magnetic field structure, cloud kinematic signatures, and cloud dynamics. We present key observational diagnostics of cloud collisions, especially: relative orientations between magnetic fields and density structures, like filaments; {sup 13}CO( J = 2-1), {sup 13}CO( J = 3-2), and {sup 12}CO( J = 8-7) integrated intensity maps and spectra; and cloud virial parameters. We compare these results to observed Galactic clouds.

Authors:
;  [1];  [2];  [3];  [4];  [5]
  1. Department of Physics, University of Florida, Gainesville, FL 32611 (United States)
  2. National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan)
  3. School of Physics and Astronomy, University of Leeds (United Kingdom)
  4. Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States)
  5. Department of Physics, Florida State University, Tallahassee, FL 32306-4350 (United States)
Publication Date:
OSTI Identifier:
22663849
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 835; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; CARBON 12; CARBON 13; CARBON MONOXIDE; COLLISIONS; COMPARATIVE EVALUATIONS; DENSITY; DISSOCIATION; GRAVITATIONAL INSTABILITY; HEATING; IMPACT PARAMETER; MAGNETIC FIELDS; MAGNETOHYDRODYNAMICS; SIMULATION; SPECTRA; STARS; TURBULENCE; VELOCITY

Citation Formats

Wu, Benjamin, Tan, Jonathan C., Nakamura, Fumitaka, Loo, Sven Van, Christie, Duncan, and Collins, David. GMC Collisions as Triggers of Star Formation. II. 3D Turbulent, Magnetized Simulations. United States: N. p., 2017. Web. doi:10.3847/1538-4357/835/2/137.
Wu, Benjamin, Tan, Jonathan C., Nakamura, Fumitaka, Loo, Sven Van, Christie, Duncan, & Collins, David. GMC Collisions as Triggers of Star Formation. II. 3D Turbulent, Magnetized Simulations. United States. doi:10.3847/1538-4357/835/2/137.
Wu, Benjamin, Tan, Jonathan C., Nakamura, Fumitaka, Loo, Sven Van, Christie, Duncan, and Collins, David. Wed . "GMC Collisions as Triggers of Star Formation. II. 3D Turbulent, Magnetized Simulations". United States. doi:10.3847/1538-4357/835/2/137.
@article{osti_22663849,
title = {GMC Collisions as Triggers of Star Formation. II. 3D Turbulent, Magnetized Simulations},
author = {Wu, Benjamin and Tan, Jonathan C. and Nakamura, Fumitaka and Loo, Sven Van and Christie, Duncan and Collins, David},
abstractNote = {We investigate giant molecular cloud collisions and their ability to induce gravitational instability and thus star formation. This mechanism may be a major driver of star formation activity in galactic disks. We carry out a series of 3D, magnetohydrodynamics (MHD), adaptive mesh refinement simulations to study how cloud collisions trigger formation of dense filaments and clumps. Heating and cooling functions are implemented based on photo-dissociation region models that span the atomic-to-molecular transition and can return detailed diagnostic information. The clouds are initialized with supersonic turbulence and a range of magnetic field strengths and orientations. Collisions at various velocities and impact parameters are investigated. Comparing and contrasting colliding and non-colliding cases, we characterize morphologies of dense gas, magnetic field structure, cloud kinematic signatures, and cloud dynamics. We present key observational diagnostics of cloud collisions, especially: relative orientations between magnetic fields and density structures, like filaments; {sup 13}CO( J = 2-1), {sup 13}CO( J = 3-2), and {sup 12}CO( J = 8-7) integrated intensity maps and spectra; and cloud virial parameters. We compare these results to observed Galactic clouds.},
doi = {10.3847/1538-4357/835/2/137},
journal = {Astrophysical Journal},
number = 2,
volume = 835,
place = {United States},
year = {Wed Feb 01 00:00:00 EST 2017},
month = {Wed Feb 01 00:00:00 EST 2017}
}
  • We utilize magnetohydrodynamic (MHD) simulations to develop a numerical model for giant molecular cloud (GMC)–GMC collisions between nearly magnetically critical clouds. The goal is to determine if, and under what circumstances, cloud collisions can cause pre-existing magnetically subcritical clumps to become supercritical and undergo gravitational collapse. We first develop and implement new photodissociation region based heating and cooling functions that span the atomic to molecular transition, creating a multiphase ISM and allowing modeling of non-equilibrium temperature structures. Then in 2D and with ideal MHD, we explore a wide parameter space of magnetic field strength, magnetic field geometry, collision velocity, andmore » impact parameter and compare isolated versus colliding clouds. We find factors of ∼2–3 increase in mean clump density from typical collisions, with strong dependence on collision velocity and magnetic field strength, but ultimately limited by flux-freezing in 2D geometries. For geometries enabling flow along magnetic field lines, greater degrees of collapse are seen. We discuss observational diagnostics of cloud collisions, focussing on {sup 13}CO(J = 2–1), {sup 13}CO(J = 3–2), and {sup 12}CO(J = 8–7) integrated intensity maps and spectra, which we synthesize from our simulation outputs. We find that the ratio of J = 8–7 to lower-J emission is a powerful diagnostic probe of GMC collisions.« less
  • We study giant molecular cloud (GMC) collisions and their ability to trigger star cluster formation. We further develop our three-dimensional magnetized, turbulent, colliding GMC simulations by implementing star formation subgrid models. Two such models are explored: (1) “Density-Regulated,” i.e., fixed efficiency per free-fall time above a set density threshold and (2) “Magnetically Regulated,” i.e., fixed efficiency per free-fall time in regions that are magnetically supercritical. Variations of parameters associated with these models are also explored. In the non-colliding simulations, the overall level of star formation is sensitive to model parameter choices that relate to effective density thresholds. In the GMCmore » collision simulations, the final star formation rates and efficiencies are relatively independent of these parameters. Between the non-colliding and colliding cases, we compare the morphologies of the resulting star clusters, properties of star-forming gas, time evolution of the star formation rate (SFR), spatial clustering of the stars, and resulting kinematics of the stars in comparison to the natal gas. We find that typical collisions, by creating larger amounts of dense gas, trigger earlier and enhanced star formation, resulting in 10 times higher SFRs and efficiencies. The star clusters formed from GMC collisions show greater spatial substructure and more disturbed kinematics.« less
  • The role of turbulence and magnetic fields is studied for star formation in molecular clouds. We derive and compare six theoretical models for the star formation rate (SFR)-the Krumholz and McKee (KM), Padoan and Nordlund (PN), and Hennebelle and Chabrier (HC) models, and three multi-freefall versions of these, suggested by HC-all based on integrals over the log-normal distribution of turbulent gas. We extend all theories to include magnetic fields and show that the SFR depends on four basic parameters: (1) virial parameter {alpha}{sub vir}; (2) sonic Mach number M; (3) turbulent forcing parameter b, which is a measure for themore » fraction of energy driven in compressive modes; and (4) plasma {beta}=2M{sub A}{sup 2}/M{sup 2} with the Alfven Mach number M{sub A}. We compare all six theories with MHD simulations, covering cloud masses of 300 to 4 Multiplication-Sign 10{sup 6} M{sub Sun} and Mach numbers M=3-50 and M{sub A}=1-{infinity}, with solenoidal (b = 1/3), mixed (b = 0.4), and compressive turbulent (b = 1) forcings. We find that the SFR increases by a factor of four between M=5 and 50 for compressive turbulent forcing and {alpha}{sub vir} {approx} 1. Comparing forcing parameters, we see that the SFR is more than 10 times higher with compressive than solenoidal forcing for M=10 simulations. The SFR and fragmentation are both reduced by a factor of two in strongly magnetized, trans-Alfvenic turbulence compared to hydrodynamic turbulence. All simulations are fit simultaneously by the multi-freefall KM and multi-freefall PN theories within a factor of two over two orders of magnitude in SFR. The simulated SFRs cover the range and correlation of SFR column density with gas column density observed in Galactic clouds, and agree well for star formation efficiencies SFE = 1%-10% and local efficiencies {epsilon} = 0.3-0.7 due to feedback. We conclude that the SFR is primarily controlled by interstellar turbulence, with a secondary effect coming from magnetic fields.« less
  • We study the star formation efficiency (SFE) in simulations and observations of turbulent, magnetized, molecular clouds. We find that the probability density functions (PDFs) of the density and the column density in our simulations with solenoidal, mixed, and compressive forcing of turbulence, sonic Mach numbers of 3-50, and magnetic fields in the super- to the trans-Alfvenic regime all develop power-law tails of flattening slope with increasing SFE. The high-density tails of the PDFs are consistent with equivalent radial density profiles, {rho}{proportional_to}r {sup -{kappa}} with {kappa} {approx} 1.5-2.5, in agreement with observations. Studying velocity-size scalings, we find that all the simulationsmore » are consistent with the observed v{proportional_to}l{sup 1/2} scaling of supersonic turbulence and seem to approach Kolmogorov turbulence with v{proportional_to}l{sup 1/3} below the sonic scale. The velocity-size scaling is, however, largely independent of the SFE. In contrast, the density-size and column density-size scalings are highly sensitive to star formation. We find that the power-law slope {alpha} of the density power spectrum, P {sub 3D}({rho}, k){proportional_to}k {sup {alpha}}, or equivalently the {Delta}-variance spectrum of the column density, {sigma}{sup 2} {sub {Delta}}({Sigma}, l) {proportional_to} l{sup -{alpha}}, switches sign from {alpha} {approx}< 0 for SFE {approx} 0 to {alpha} {approx}> 0 when star formation proceeds (SFE > 0). We provide a relation to compute the SFE from a measurement of {alpha}. Studying the literature, we find values ranging from {alpha} = -1.6 to +1.6 in observations covering scales from the large-scale atomic medium, over cold molecular clouds, down to dense star-forming cores. From those {alpha} values, we infer SFEs and find good agreement with independent measurements based on young stellar object (YSO) counts, where available. Our SFE-{alpha} relation provides an independent estimate of the SFE based on the column density map of a cloud alone, without requiring a priori knowledge of star formation activity or YSO counts.« less
  • Comparative studies of flocculent and grand-design spirals suggest that density waves are not the predominant trigger of star formation in most galaxies. Implications for chemical evolution are profound. It may be possible to ignore the details of the spiral-wave phenomenon in research aimed at unifying the chemical properties of spiral disks. 16 references.