skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Luminous and Variable Stars in M31 and M33. IV. Luminous Blue Variables, Candidate LBVs, B[e] Supergiants, and the Warm Hypergiants: How to Tell Them Apart

Abstract

In this series of papers we have presented the results of a spectroscopic survey of luminous stars in the nearby spirals M31 and M33. Here, we present spectroscopy of 132 additional stars. Most have emission-line spectra, including luminous blue variables (LBVs) and candidate LBVs, Fe ii emission line stars, the B[e] supergiants, and the warm hypergiants. Many of these objects are spectroscopically similar and are often confused with each other. We examine their similarities and differences and propose the following guidelines that can be used to help distinguish these stars in future work. (1) The B[e] supergiants have emission lines of [O i] and [Fe ii] in their spectra. Most of the spectroscopically confirmed sgB[e] stars also have warm circumstellar dust in their spectral energy distributions (SEDs). (2) Confirmed LBVs do not have the [O i] emission lines in their spectra. Some LBVs have [Fe ii] emission lines, but not all. Their SEDs show free–free emission in the near-infrared but no evidence for warm dust . Their most important and defining characteristic is the S Dor-type variability. (3) The warm hypergiants spectroscopically resemble the LBVs in their dense wind state and the B[e] supergiants. However, they are very dusty. Somemore » have [Fe ii] and [O i] emission in their spectra like the sgB[e] stars, but are distinguished by their A- and F-type absorption-line spectra. In contrast, the B[e] supergiant spectra have strong continua and few if any apparent absorption lines. Candidate LBVs should share the spectral characteristics of the confirmed LBVs with low outflow velocities and the lack of warm circumstellar dust.« less

Authors:
; ;  [1];  [2];  [3]
  1. Minnesota Institute for Astrophysics, 116 Church Street SE, University of Minnesota, Minneapolis, MN 55455 (United States)
  2. University of Illinois Springfield, Springfield, IL 62703 (United States)
  3. Astronomical Institute, Ruhr-Universitaet Bochum (Germany)
Publication Date:
OSTI Identifier:
22663845
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 836; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ABSORPTION; DUSTS; EMISSION; ENERGY SPECTRA; GALAXIES; LUMINOSITY; RECOMMENDATIONS; SPECTROSCOPY; STELLAR WINDS; SUPERGIANT STARS; VARIABLE STARS

Citation Formats

Humphreys, Roberta M., Gordon, Michael S., Hahn, David, Martin, John C., and Weis, Kerstin, E-mail: roberta@umn.edu. Luminous and Variable Stars in M31 and M33. IV. Luminous Blue Variables, Candidate LBVs, B[e] Supergiants, and the Warm Hypergiants: How to Tell Them Apart. United States: N. p., 2017. Web. doi:10.3847/1538-4357/AA582E.
Humphreys, Roberta M., Gordon, Michael S., Hahn, David, Martin, John C., & Weis, Kerstin, E-mail: roberta@umn.edu. Luminous and Variable Stars in M31 and M33. IV. Luminous Blue Variables, Candidate LBVs, B[e] Supergiants, and the Warm Hypergiants: How to Tell Them Apart. United States. doi:10.3847/1538-4357/AA582E.
Humphreys, Roberta M., Gordon, Michael S., Hahn, David, Martin, John C., and Weis, Kerstin, E-mail: roberta@umn.edu. Fri . "Luminous and Variable Stars in M31 and M33. IV. Luminous Blue Variables, Candidate LBVs, B[e] Supergiants, and the Warm Hypergiants: How to Tell Them Apart". United States. doi:10.3847/1538-4357/AA582E.
@article{osti_22663845,
title = {Luminous and Variable Stars in M31 and M33. IV. Luminous Blue Variables, Candidate LBVs, B[e] Supergiants, and the Warm Hypergiants: How to Tell Them Apart},
author = {Humphreys, Roberta M. and Gordon, Michael S. and Hahn, David and Martin, John C. and Weis, Kerstin, E-mail: roberta@umn.edu},
abstractNote = {In this series of papers we have presented the results of a spectroscopic survey of luminous stars in the nearby spirals M31 and M33. Here, we present spectroscopy of 132 additional stars. Most have emission-line spectra, including luminous blue variables (LBVs) and candidate LBVs, Fe ii emission line stars, the B[e] supergiants, and the warm hypergiants. Many of these objects are spectroscopically similar and are often confused with each other. We examine their similarities and differences and propose the following guidelines that can be used to help distinguish these stars in future work. (1) The B[e] supergiants have emission lines of [O i] and [Fe ii] in their spectra. Most of the spectroscopically confirmed sgB[e] stars also have warm circumstellar dust in their spectral energy distributions (SEDs). (2) Confirmed LBVs do not have the [O i] emission lines in their spectra. Some LBVs have [Fe ii] emission lines, but not all. Their SEDs show free–free emission in the near-infrared but no evidence for warm dust . Their most important and defining characteristic is the S Dor-type variability. (3) The warm hypergiants spectroscopically resemble the LBVs in their dense wind state and the B[e] supergiants. However, they are very dusty. Some have [Fe ii] and [O i] emission in their spectra like the sgB[e] stars, but are distinguished by their A- and F-type absorption-line spectra. In contrast, the B[e] supergiant spectra have strong continua and few if any apparent absorption lines. Candidate LBVs should share the spectral characteristics of the confirmed LBVs with low outflow velocities and the lack of warm circumstellar dust.},
doi = {10.3847/1538-4357/AA582E},
journal = {Astrophysical Journal},
number = 1,
volume = 836,
place = {United States},
year = {Fri Feb 10 00:00:00 EST 2017},
month = {Fri Feb 10 00:00:00 EST 2017}
}
  • An increasing number of non-terminal eruptions are being found in the numerous surveys for optical transients. Very little is known about these giant eruptions, their progenitors and their evolutionary state. A greatly improved census of the likely progenitor class, including the most luminous evolved stars, the luminous blue variables (LBVs), and the warm and cool hypergiants is now needed for a complete picture of the final pre-supernova stages of very massive stars. We have begun a survey of the evolved and unstable luminous star populations in several nearby resolved galaxies. In this second paper on M31 and M33, we reviewmore » the spectral characteristics, spectral energy distributions, circumstellar ejecta, and evidence for mass loss for 82 luminous and variable stars. We show that many of these stars have warm circumstellar dust including several of the Fe II emission line stars, but conclude that the confirmed LBVs in M31 and M33 do not. The confirmed LBVs have relatively low wind speeds even in their hot, quiescent or visual minimum state compared to the B-type supergiants and Of/WN stars which they spectroscopically resemble. The nature of the Fe II emission line stars and their relation to the LBV state remains uncertain, but some have properties in common with the warm hypergiants and the sgB[e] stars. Several individual stars are discussed in detail. We identify three possible candidate LBVs and three additional post-red supergiant candidates. We suggest that M33-013406.63 (UIT301,B416) is not an LBV/S Dor variable, but is a very luminous late O-type supergiant and one of the most luminous stars or pair of stars in M33.« less
  • The progenitors of Type IIP supernovae (SNe) have an apparent upper limit to their initial masses of about 20 M{sub Sun }, suggesting that the most massive red supergiants evolve to warmer temperatures before their terminal explosion. But very few post-red supergiants are known. We have identified a small group of luminous stars in M31 and M33 that are candidates for post-red supergiant evolution. These stars have A-F-type supergiant absorption line spectra and strong hydrogen emission. Their spectra are also distinguished by the Ca II triplet and [Ca II] doublet in emission formed in a low-density circumstellar environment. They allmore » have significant near- and mid-infrared excess radiation due to free-free emission and thermal emission from dust. We estimate the amount of mass they have shed and discuss their wind parameters and mass loss rates, which range from a few Multiplication-Sign 10{sup -6} to 10{sup -4} M{sub Sun} yr{sup -1}. On an H-R diagram, these stars will overlap the region of the luminous blue variables (LBVs) at maximum light; however, the warm hypergiants are not LBVs. Their non-spherical winds are not optically thick, and they have not exhibited any significant variability. We suggest, however, that the warm hypergiants may be the progenitors of the ''less luminous'' LBVs such as R71 and even SN1987A.« less
  • Recent supernova (SN) and transient surveys have revealed an increasing number of non-terminal stellar eruptions. Though the progenitor class of these eruptions includes the most luminous stars, little is known of the pre-SN mechanics of massive stars in their most evolved state, thus motivating a census of possible progenitors. From surveys of evolved and unstable luminous star populations in nearby galaxies, we select a sample of yellow and red supergiant (RSG) candidates in M31 and M33 for review of their spectral characteristics and spectral energy distributions (SEDs). Since the position of intermediate- and late-type supergiants on the color–magnitude diagram canmore » be heavily contaminated by foreground dwarfs, we employ spectral classification and multi-band photometry from optical and near-infrared surveys to confirm membership. Based on spectroscopic evidence for mass loss and the presence of circumstellar (CS) dust in their SEDs, we find that 30%–40% of the yellow supergiants are likely in a post-RSG state. Comparison with evolutionary tracks shows that these mass-losing, post-RSGs have initial masses between 20 and 40 M {sub ⊙}. More than half of the observed RSGs in M31 and M33 are producing dusty CS ejecta. We also identify two new warm hypergiants in M31, J004621.05+421308.06 and J004051.59+403303.00, both of which are likely in a post-RSG state.« less
  • We perform a study on the optical and infrared photometric properties of known luminous blue variables (LBVs) in M31 using a sample of LBV candidates from the Local Group Galaxy Survey by Masset et al. We find that M31 LBV candidates show photometric variability ranging from 0.375 to 1.576 mag in r {sub P1} during a 3 yr time span observed by the Pan-STARRS 1 Andromeda survey (PAndromeda). Their near-infrared colors also follow the distribution of Galactic LBVs as shown by Oksala et al. We use these features as selection criteria to search for unknown LBV candidates in M31. Wemore » thus devise a method to search for candidate LBVs using both optical color from the Local Group Galaxy Survey and infrared color from the Two Micron All Sky Survey, as well as photometric variations observed by PAndromeda. We find four sources exhibiting common properties of known LBVs. These sources also exhibit UV emission as seen from Galaxy Evolution Explorer, which is one of the previously adopted methods of searching for LBV candidates. The locations of the LBVs are well aligned with M31 spiral arms as seen in UV light, suggesting that they are evolved stars at a young age given their high-mass nature. We compare these candidates with the latest Geneva evolutionary tracks, which show that our new M31 LBV candidates are massive, evolved stars with ages of 10-100 Myr.« less
  • Spectra have been obtained for classification of 42 candidate supergiants and 12 probable OB stars in M31 and eight early-type stars in M33. Twenty-six of those in M31 and six in M33 are confirmed as apparent single members with spectral types ranging from O8 to F8. Their interstellar extinction and luminosities are derived from published photographic and CCD photometry for all of the confirmed members. The preliminary and still incomplete HR diagram obtained for M31 shows an apparent lack of the most massive stars, stars with initial masses greater than 60 solar masses. The effects of incompleteness and observational selectionmore » on the interpretation of this HR diagram are discussed. 42 refs.« less