skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Evolution of Occator Crater on (1) Ceres

Journal Article · · Astronomical Journal (Online)
; ; ; ; ; ;  [1];  [2];  [3]
  1. Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Goettingen (Germany)
  2. IELF, TU Clausthal, Adolph-Roemer-Straße 2A, 38678 Clausthal-Zellerfeld (Germany)
  3. University of Winnipeg, Winnipeg, MB R3B 2E (Canada)

The dwarf planet Ceres (diameter 939 km) is the largest object in the main asteroid belt. Recent investigations suggest that Ceres is a thermally evolved, volatile-rich body with potential geological activity, a body which was never completely molten but possibly differentiated into a rocky core, an ice-rich mantle, and which may contain remnant internal liquid water. Thermal alteration and exogenic material infall contribute to producing a (dark) carbonaceous chondritic-like surface containing ammoniated phyllosilicates. Here we report imaging and spectroscopic analyses of Occator crater derived from the Framing Camera and the Visible and Infrared Spectrometer onboard Dawn. We found that the central bright spot (Cerealia Facula) of Occator is ∼30 Myr younger than the crater itself. The central spot is located in a central pit which contains a dome that is spectrally homogenous, exhibiting absorption features that are consistent with carbonates. Multiple radial fractures across the dome indicate an extrusive formation process. Our results lead us to conclude that the floor region was subject to past endogenic activity. Dome and bright material in its vicinity formed likely due to a long-lasting, periodic, or episodic ascent of bright material from a subsurface reservoir rich in carbonates. Originally triggered by an impact event, gases, possibly dissolved from a subsurface water/brine layer, enabled material rich in carbonates to ascend through fractures and be deposited onto the surface.

OSTI ID:
22663793
Journal Information:
Astronomical Journal (Online), Vol. 153, Issue 3; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 1538-3881
Country of Publication:
United States
Language:
English

Similar Records

Oxo Crater on (1) Ceres: Geological History and the Role of Water-ice
Journal Article · Fri Sep 01 00:00:00 EDT 2017 · Astronomical Journal (Online) · OSTI ID:22663793

HAZE AT OCCATOR CRATER ON DWARF PLANET CERES
Journal Article · Tue Dec 20 00:00:00 EST 2016 · Astrophysical Journal Letters · OSTI ID:22663793

SURFACE ALBEDO AND SPECTRAL VARIABILITY OF CERES
Journal Article · Mon Feb 01 00:00:00 EST 2016 · Astrophysical Journal Letters · OSTI ID:22663793