skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Orbital Evolution of Moons in Weakly Accreting Circumplanetary Disks

Abstract

We investigate the formation of hot and massive circumplanetary disks (CPDs) and the orbital evolution of satellites formed in these disks. Because of the comparatively small size-scale of the sub-disk, quick magnetic diffusion prevents the magnetorotational instability (MRI) from being well developed at ionization levels that would allow MRI in the parent protoplanetary disk. In the absence of significant angular momentum transport, continuous mass supply from the parental protoplanetary disk leads to the formation of a massive CPD. We have developed an evolutionary model for this scenario and have estimated the orbital evolution of satellites within the disk. We find, in a certain temperature range, that inward migration of a satellite can be stopped by a change in the structure due to the opacity transitions. Moreover, by capturing second and third migrating satellites in mean motion resonances, a compact system in Laplace resonance can be formed in our disk models.

Authors:
;  [1];  [2];  [3]
  1. Niels Bohr International Academy, The Niels Bohr Institute, Blegdamsvej 17, DK-2100, Copenhagen Ø (Denmark)
  2. Department of Physics, Nagoya University, Furo-cho, Showa-ku, Nagoya, Aichi, 464-8602 (Japan)
  3. Astronomical Institute, Tohoku University, 6-3 Aramaki, Aoba-ku, Sendai, 980-8578 (Japan)
Publication Date:
OSTI Identifier:
22663716
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astronomical Journal (Online); Journal Volume: 153; Journal Issue: 4; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ANGULAR MOMENTUM; AVAILABILITY; DIFFUSION; INSTABILITY; IONIZATION; MASS; MIGRATION; NMR IMAGING; OPACITY; PLANETS; PROTOPLANETS; RESONANCE

Citation Formats

Fujii, Yuri I., Gressel, Oliver, Kobayashi, Hiroshi, and Takahashi, Sanemichi Z., E-mail: yuri.fujii@nbi.ku.dk. Orbital Evolution of Moons in Weakly Accreting Circumplanetary Disks. United States: N. p., 2017. Web. doi:10.3847/1538-3881/AA647D.
Fujii, Yuri I., Gressel, Oliver, Kobayashi, Hiroshi, & Takahashi, Sanemichi Z., E-mail: yuri.fujii@nbi.ku.dk. Orbital Evolution of Moons in Weakly Accreting Circumplanetary Disks. United States. doi:10.3847/1538-3881/AA647D.
Fujii, Yuri I., Gressel, Oliver, Kobayashi, Hiroshi, and Takahashi, Sanemichi Z., E-mail: yuri.fujii@nbi.ku.dk. Sat . "Orbital Evolution of Moons in Weakly Accreting Circumplanetary Disks". United States. doi:10.3847/1538-3881/AA647D.
@article{osti_22663716,
title = {Orbital Evolution of Moons in Weakly Accreting Circumplanetary Disks},
author = {Fujii, Yuri I. and Gressel, Oliver and Kobayashi, Hiroshi and Takahashi, Sanemichi Z., E-mail: yuri.fujii@nbi.ku.dk},
abstractNote = {We investigate the formation of hot and massive circumplanetary disks (CPDs) and the orbital evolution of satellites formed in these disks. Because of the comparatively small size-scale of the sub-disk, quick magnetic diffusion prevents the magnetorotational instability (MRI) from being well developed at ionization levels that would allow MRI in the parent protoplanetary disk. In the absence of significant angular momentum transport, continuous mass supply from the parental protoplanetary disk leads to the formation of a massive CPD. We have developed an evolutionary model for this scenario and have estimated the orbital evolution of satellites within the disk. We find, in a certain temperature range, that inward migration of a satellite can be stopped by a change in the structure due to the opacity transitions. Moreover, by capturing second and third migrating satellites in mean motion resonances, a compact system in Laplace resonance can be formed in our disk models.},
doi = {10.3847/1538-3881/AA647D},
journal = {Astronomical Journal (Online)},
number = 4,
volume = 153,
place = {United States},
year = {Sat Apr 01 00:00:00 EDT 2017},
month = {Sat Apr 01 00:00:00 EDT 2017}
}
  • We investigate gas accretion flow onto a circumplanetary disk from a protoplanetary disk in detail by using high-resolution three-dimensional nested-grid hydrodynamic simulations, in order to provide a basis of formation processes of satellites around giant planets. Based on detailed analyses of gas accretion flow, we find that most of gas accretion onto circumplanetary disks occurs nearly vertically toward the disk surface from high altitude, which generates a shock surface at several scale heights of the circumplanetary disk. The gas that has passed through the shock surface moves inward because its specific angular momentum is smaller than that of the localmore » Keplerian rotation, while gas near the midplane in the protoplanetary disk cannot accrete to the circumplanetary disk. Gas near the midplane within the planet's Hill sphere spirals outward and escapes from the Hill sphere through the two Lagrangian points L{sub 1} and L{sub 2}. We also analyze fluxes of accreting mass and angular momentum in detail and find that the distributions of the fluxes onto the disk surface are well described by power-law functions and that a large fraction of gas accretion occurs at the outer region of the disk, i.e., at about 0.1 times the Hill radius. The nature of power-law functions indicates that, other than the outer edge, there is no specific radius where gas accretion is concentrated. These source functions of mass and angular momentum in the circumplanetary disk would provide us with useful constraints on the structure and evolution of the circumplanetary disk, which is important for satellite formation.« less
  • I calculate the spectral energy distributions of accreting circumplanetary disks using atmospheric radiative transfer models. Circumplanetary disks only accreting at 10{sup –10} M {sub ☉} yr{sup –1} around a 1 M{sub J} planet can be brighter than the planet itself. A moderately accreting circumplanetary disk ( M-dot ∼10{sup −8} M{sub ⊙} yr{sup −1}; enough to form a 10 M{sub J} planet within 1 Myr) around a 1 M{sub J} planet has a maximum temperature of ∼2000 K, and at near-infrared wavelengths (J, H, K bands), this disk is as bright as a late-M-type brown dwarf or a 10 M{sub J} planetmore » with a ''hot start''. To use direct imaging to find the accretion disks around low-mass planets (e.g., 1 M{sub J} ) and distinguish them from brown dwarfs or hot high-mass planets, it is crucial to obtain photometry at mid-infrared bands (L', M, N bands) because the emission from circumplanetary disks falls off more slowly toward longer wavelengths than those of brown dwarfs or planets. If young planets have strong magnetic fields (≳100 G), fields may truncate slowly accreting circumplanetary disks ( M-dot ≲10{sup −9} M{sub ⊙} yr{sup −1}) and lead to magnetospheric accretion, which can provide additional accretion signatures, such as UV/optical excess from the accretion shock and line emission.« less
  • Using radiation hydrodynamics simulations, we explore the evolution of circumplanetary disks around wide-orbit proto-gas giants. At large distances from the star ({approx}100 AU), gravitational instability followed by disk fragmentation can form low-mass substellar companions (massive gas giants and/or brown dwarfs) that are likely to host large disks. We examine the initial evolution of these subdisks and their role in regulating the growth of their substellar companions, as well as explore consequences of their interactions with circumstellar material. We find that subdisks that form in the context of GIs evolve quickly from a very massive state. Long-term accretion rates from themore » subdisk onto the proto-gas giant reach {approx}0.3 Jupiter masses kyr{sup -1}. We also find consistency with previous simulations, demonstrating that subdisks are truncated at {approx}1/3 of the companion's Hill radius and are thick, with (h/r) of {approx}> 0.2. The thickness of subdisks draws to question the use of thin-disk approximations for understanding the behavior of subdisks, and the morphology of subdisks has implications for the formation and extent of satellite systems. These subdisks create heating events in otherwise cold regions of the circumstellar disk and serve as planet formation beacons that can be detected by instruments such as ALMA.« less
  • We investigate the accretion of solid materials onto circumplanetary disks from heliocentric orbits rotating in protoplanetary disks, which is a key process for the formation of regular satellite systems. In the late stage of the gas-capturing phase of giant planet formation, the accreting gas from protoplanetary disks forms circumplanetary disks. Since the accretion flow toward the circumplanetary disks affects the particle motion through gas drag force, we use hydrodynamic simulation data for the gas drag term to calculate the motion of solid materials. We consider a wide range of size for the solid particles (10{sup –2}-10{sup 6} m), and findmore » that the accretion efficiency of the solid particles peaks around 10 m sized particles because energy dissipation of drag with circum-planetary disk gas in this size regime is most effective. The efficiency for particles larger than 10 m becomes lower because gas drag becomes less effective. For particles smaller than 10 m, the efficiency is lower because the particles are strongly coupled with the background gas flow, which prevents particles from accretion. We also find that the distance from the planet where the particles are captured by the circumplanetary disks is in a narrow range and well described as a function of the particle size.« less
  • We develop a fast and accurate calculation method for ionization degrees in protoplanetary and circumplanetary disks including dust grains. We apply our method to calculate the ionization degree of circumplanetary disks. It is important to understand the structure and evolution of protoplanetary /circumplanetary disks since they are thought to be the sites of planet/satellite formation. The turbulence that causes gas accretion is supposed to be driven by magnetorotational instability (MRI) that occurs only when the ionization degree is high enough for magnetic field to be coupled to gas. We calculate the ionization degrees in circumplanetary disks to estimate the sizesmore » of MRI-inactive regions. We properly include the effect of dust grains because they efficiently capture charged particles and make ionization degree lower. Inclusion of dust grains complicates the reaction equations and requires expensive computation. In order to accelerate the calculation of ionization reactions, we develop a semianalytic method based on the charge distribution model proposed previously. This method enables us to study the ionization state of disks for a wide range of model parameters. For a previous model of circum-Jovian disk, we find that an MRI-inactive region covers almost all regions even without dust grains. This suggests that the gas accretion rates in circumplanetary disks are much smaller than previously thought.« less