skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: JVLA Observations of Young Brown Dwarfs

Abstract

We present sensitive 3.0 cm JVLA radio continuum observations of six regions of low-mass star formation that include twelve young brown dwarfs (BDs) and four young BD candidates. We detect a total of 49 compact radio sources in the fields observed, of which 24 have no reported counterparts and are considered new detections. Twelve of the radio sources show variability in timescales of weeks to months, suggesting gyrosynchrotron emission produced in active magnetospheres. Only one of the target BDs, FU Tau A, was detected. However, we detected radio emission associated with two of the BD candidates, WL 20S and CHLT 2. The radio flux densities of the sources associated with these BD candidates are more than an order of magnitude larger than expected for a BD and suggest a revision of their classification. In contrast, FU Tau A falls on the well-known correlation between radio luminosity and bolometric luminosity, suggesting that the emission comes from a thermal jet and that this BD seems to be forming as a scaled-down version of low-mass stars.

Authors:
; ;  [1]
  1. Instituto de Radioastronomía y Astrofísica, UNAM, Apdo. Postal 3-72 (Xangari), 58089 Morelia, Michoacán, México (Mexico)
Publication Date:
OSTI Identifier:
22663710
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astronomical Journal (Online); Journal Volume: 153; Journal Issue: 5; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; BOLOMETERS; CORRELATIONS; DWARF STARS; EMISSION; FLUX DENSITY; LUMINOSITY; MASS; STAR EVOLUTION; STARS; STELLAR MAGNETOSPHERES

Citation Formats

Rodríguez, Luis F., Zapata, Luis A., and Palau, Aina, E-mail: l.rodriguez@crya.unam.mx, E-mail: l.zapata@crya.unam.mx, E-mail: a.palau@crya.unam.mx. JVLA Observations of Young Brown Dwarfs. United States: N. p., 2017. Web. doi:10.3847/1538-3881/AA6681.
Rodríguez, Luis F., Zapata, Luis A., & Palau, Aina, E-mail: l.rodriguez@crya.unam.mx, E-mail: l.zapata@crya.unam.mx, E-mail: a.palau@crya.unam.mx. JVLA Observations of Young Brown Dwarfs. United States. doi:10.3847/1538-3881/AA6681.
Rodríguez, Luis F., Zapata, Luis A., and Palau, Aina, E-mail: l.rodriguez@crya.unam.mx, E-mail: l.zapata@crya.unam.mx, E-mail: a.palau@crya.unam.mx. Mon . "JVLA Observations of Young Brown Dwarfs". United States. doi:10.3847/1538-3881/AA6681.
@article{osti_22663710,
title = {JVLA Observations of Young Brown Dwarfs},
author = {Rodríguez, Luis F. and Zapata, Luis A. and Palau, Aina, E-mail: l.rodriguez@crya.unam.mx, E-mail: l.zapata@crya.unam.mx, E-mail: a.palau@crya.unam.mx},
abstractNote = {We present sensitive 3.0 cm JVLA radio continuum observations of six regions of low-mass star formation that include twelve young brown dwarfs (BDs) and four young BD candidates. We detect a total of 49 compact radio sources in the fields observed, of which 24 have no reported counterparts and are considered new detections. Twelve of the radio sources show variability in timescales of weeks to months, suggesting gyrosynchrotron emission produced in active magnetospheres. Only one of the target BDs, FU Tau A, was detected. However, we detected radio emission associated with two of the BD candidates, WL 20S and CHLT 2. The radio flux densities of the sources associated with these BD candidates are more than an order of magnitude larger than expected for a BD and suggest a revision of their classification. In contrast, FU Tau A falls on the well-known correlation between radio luminosity and bolometric luminosity, suggesting that the emission comes from a thermal jet and that this BD seems to be forming as a scaled-down version of low-mass stars.},
doi = {10.3847/1538-3881/AA6681},
journal = {Astronomical Journal (Online)},
number = 5,
volume = 153,
place = {United States},
year = {Mon May 01 00:00:00 EDT 2017},
month = {Mon May 01 00:00:00 EDT 2017}
}