skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Test of the FLRW Metric and Curvature with Strong Lens Time Delays

Abstract

We present a new model-independent strategy for testing the Friedmann–Lemaître–Robertson–Walker (FLRW) metric and constraining cosmic curvature, based on future time-delay measurements of strongly lensed quasar-elliptical galaxy systems from the Large Synoptic Survey Telescope and supernova observations from the Dark Energy Survey. The test only relies on geometric optics. It is independent of the energy contents of the universe and the validity of the Einstein equation on cosmological scales. The study comprises two levels: testing the FLRW metric through the distance sum rule (DSR) and determining/constraining cosmic curvature. We propose an effective and efficient (redshift) evolution model for performing the former test, which allows us to concretely specify the violation criterion for the FLRW DSR. If the FLRW metric is consistent with the observations, then on the second level the cosmic curvature parameter will be constrained to ∼0.057 or ∼0.041 (1 σ ), depending on the availability of high-redshift supernovae, which is much more stringent than current model-independent techniques. We also show that the bias in the time-delay method might be well controlled, leading to robust results. The proposed method is a new independent tool for both testing the fundamental assumptions of homogeneity and isotropy in cosmology and for determining cosmicmore » curvature. It is complementary to cosmic microwave background plus baryon acoustic oscillation analyses, which normally assume a cosmological model with dark energy domination in the late-time universe.« less

Authors:
 [1]; ;  [2];  [3]
  1. School of Science, Wuhan University of Technology, Wuhan 430070 (China)
  2. Department of Astronomy, Beijing Normal University, Beijing 100875 (China)
  3. Department of Physics and Mechanical and Electrical Engineering, Hubei University of Education, Wuhan 430205 (China)
Publication Date:
OSTI Identifier:
22663704
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 839; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; BARYONS; COSMOLOGICAL MODELS; COSMOLOGY; DATA ANALYSIS; EINSTEIN FIELD EQUATIONS; ENERGY ACCOUNTING; ENERGY BALANCE; GALAXIES; GRAVITATIONAL LENSES; GRAY ENERGY; ISOTROPY; NONLUMINOUS MATTER; OSCILLATIONS; QUASARS; RED SHIFT; RELICT RADIATION; SUM RULES; SUPERNOVAE; TIME DELAY; UNIVERSE

Citation Formats

Liao, Kai, Li, Zhengxiang, Wang, Guo-Jian, and Fan, Xi-Long, E-mail: liaokai@whut.edu.cn, E-mail: xilong.fan@glasgow.ac.uk. Test of the FLRW Metric and Curvature with Strong Lens Time Delays. United States: N. p., 2017. Web. doi:10.3847/1538-4357/AA697E.
Liao, Kai, Li, Zhengxiang, Wang, Guo-Jian, & Fan, Xi-Long, E-mail: liaokai@whut.edu.cn, E-mail: xilong.fan@glasgow.ac.uk. Test of the FLRW Metric and Curvature with Strong Lens Time Delays. United States. doi:10.3847/1538-4357/AA697E.
Liao, Kai, Li, Zhengxiang, Wang, Guo-Jian, and Fan, Xi-Long, E-mail: liaokai@whut.edu.cn, E-mail: xilong.fan@glasgow.ac.uk. Thu . "Test of the FLRW Metric and Curvature with Strong Lens Time Delays". United States. doi:10.3847/1538-4357/AA697E.
@article{osti_22663704,
title = {Test of the FLRW Metric and Curvature with Strong Lens Time Delays},
author = {Liao, Kai and Li, Zhengxiang and Wang, Guo-Jian and Fan, Xi-Long, E-mail: liaokai@whut.edu.cn, E-mail: xilong.fan@glasgow.ac.uk},
abstractNote = {We present a new model-independent strategy for testing the Friedmann–Lemaître–Robertson–Walker (FLRW) metric and constraining cosmic curvature, based on future time-delay measurements of strongly lensed quasar-elliptical galaxy systems from the Large Synoptic Survey Telescope and supernova observations from the Dark Energy Survey. The test only relies on geometric optics. It is independent of the energy contents of the universe and the validity of the Einstein equation on cosmological scales. The study comprises two levels: testing the FLRW metric through the distance sum rule (DSR) and determining/constraining cosmic curvature. We propose an effective and efficient (redshift) evolution model for performing the former test, which allows us to concretely specify the violation criterion for the FLRW DSR. If the FLRW metric is consistent with the observations, then on the second level the cosmic curvature parameter will be constrained to ∼0.057 or ∼0.041 (1 σ ), depending on the availability of high-redshift supernovae, which is much more stringent than current model-independent techniques. We also show that the bias in the time-delay method might be well controlled, leading to robust results. The proposed method is a new independent tool for both testing the fundamental assumptions of homogeneity and isotropy in cosmology and for determining cosmic curvature. It is complementary to cosmic microwave background plus baryon acoustic oscillation analyses, which normally assume a cosmological model with dark energy domination in the late-time universe.},
doi = {10.3847/1538-4357/AA697E},
journal = {Astrophysical Journal},
number = 2,
volume = 839,
place = {United States},
year = {Thu Apr 20 00:00:00 EDT 2017},
month = {Thu Apr 20 00:00:00 EDT 2017}
}
  • Using measurements of H ( z ) and d {sub A}( z ) from the Baryon Oscillation Spectroscopic Survey (BOSS) DR12 and luminosity distances from the Joint Lightcurve Analysis (JLA) compilation of supernovae (SN), we measure H {sub 0} {sub r} {sub d} without any model assumption. Our measurement of H {sub 0} r {sub d} = (10033.20{sup +333.10}{sub −371.81} (SN) ± 128.19 (BAO)) km s{sup −1} is consistent with Planck constrains for the flat ΛCDM model. We also report that higher expansion history rates h ( z ) (among the possibilities) as well as lower-bound values of H {submore » 0} r {sub d} result in better internal consistency among the independent data ( H ( z ) r {sub d} and d {sub A}( z )/ r {sub d} from BAO at z =0.32 and z =0.57 and d {sub L} from JLA) we used in this work. This can be interpreted as an interesting and independent support of Planck cosmology without using any cosmic microwave background data. We then combine these observables to test the Friedmann-Lemaȋtre-Robertson-Walker (FLRW) metric and the flatness of the Universe in a model-independent way at two redshifts, namely 0.32 and 0.57, by introducing a new diagnostic for flat-FLRW, Θ( z ), which only depends on observables of BAO and SN data. Our results are consistent with a flat-FLRW Universe within 2σ.« less
  • Time delays between lensed multiple images have been known to provide an interesting probe of the Hubble constant, but such application is often limited by degeneracies with the shape of lens potentials. We propose a new statistical approach to examine the dependence of time delays on the complexity of lens potentials, such as higher-order perturbations, non-isothermality, and substructures. Specifically, we introduce a reduced time delay of the dimensionless form, and explore its behavior analytically and numerically as a function of the image configuration that is characterized by the asymmetry and opening angle of the image pair. In particular we derivemore » a realistic conditional probability distribution for a given image configuration from Monte-Carlo simulations. We find that the probability distribution is sensitive to the image configuration such that more symmetric and/or smaller opening angle image pairs are more easily affected by perturbations on the primary lens potential. On average time delays of double lenses are less scattered than those of quadruple lenses. Furthermore, the realistic conditional distribution allows a new statistical method to constrain the Hubble constant from observed time delays. We find that 15 published time delay quasars constrain the Hubble constant to be H{sub 0} = 70 {+-} 3km s{sup -1} Mpc{sup -1}. While systematic errors coming from the heterogeneous nature of the quasar sample and the uncertainty of the input distribution of lens potentials should be considered, reasonable agreement with other estimates indicates the usefulness of our new approach as a cosmological and astrophysical probe, particularly in the era of large-scale synoptic surveys.« less
  • Using Fermat's principle, we analyze the effects of very long wavelength gravitational waves upon the images of a gravitationally lensed quasar. We show that the lens equation in the presence of gravity waves is equivalent to that of a lens with a different alignment between source, deflector, and observer in the absence of gravity waves. Contrary to a recent claim, we conclude that measurements of time delays in gravitational lenses cannot serve as a method to detect or constrain a stochastic background of gravitational waves of cosmological wavelengths, because the wave-induced time delay is observationally indistinguishable from an intrinsic timemore » delay due to the lens geometry.« less
  • We analyze the effects of large-scale inhomogeneities upon the observables of a gravitational lens system, focusing on the issue of whether large-scale structure imperils the program to determine the Hubble parameter through measurements of time delays between multiple images in lens systems. We find that the lens equation in a spatially flat Robertson-Walker cosmology with scalar metric fluctuations is equivalent, to the leading order of approximation, to that for the same lensing system in the absence of fluctuations but with a different angular position of the source relative to the lens axis. Since the absolute position of the source ismore » not observable, gravitational lens measurements cannot directly reveal the presence of large-scale structure. Large-scale perturbations do not modify the functional relationship between observable lens parameters and the Hubble parameter and therefore do not seriously affect the determination of {ital H}{sub 0} from lens time delays. {copyright} {ital 1996 The American Astronomical Society.}« less
  • We show that dark matter substructure in galaxy-scale halos perturbs the time delays between images in strong gravitational lens systems. The variance of the effect depends on the subhalo mass function, scaling as the product of the substructure mass fraction, and a characteristic mass of subhalos (namely (m {sup 2})/(m)). Time delay perturbations therefore complement gravitational lens flux ratio anomalies and astrometric perturbations by measuring a different moment of the subhalo mass function. Unlike flux ratio anomalies, 'time delay millilensing' is unaffected by dust extinction or stellar microlensing in the lens galaxy. Furthermore, we show that time delay ratios aremore » immune to the radial profile degeneracy that usually plagues lens modeling. We lay out a mathematical theory of time delay perturbations and find it to be tractable and attractive. We predict that in 'cusp' lenses with close triplets of images, substructure may change the arrival-time order of the images (compared with smooth models). We discuss the possibility that this effect has already been observed in RX J1131-1231.« less