skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Canada–France Ecliptic Plane Survey (CFEPS)—High-latitude Component

Abstract

The High Ecliptic Latitude (HiLat) extension of the Canada–France Ecliptic Plane Survey (CFEPS), conducted from 2006 June to 2009 July, discovered a set of Trans-Neptunian objects (TNOs) that we report here. The HiLat component was designed to address one of the shortcomings of ecliptic surveys (like CFEPS), their low sensitivity to high-inclination objects. We searched 701 deg{sup 2} of sky ranging from 12° to 85° ecliptic latitude and discovered 24 TNOs, with inclinations between 15° and 104°. This survey places a very strong constraint on the inclination distribution of the hot component of the classical Kuiper Belt, ruling out any possibility of a large intrinsic fraction of highly inclined orbits. Using the parameterization of Brown, the HiLat sample combined with CFEPS imposes a width 14° ≤  σ  ≤ 15.°5, with a best match for σ  = 14.°5. HiLat discovered the first retrograde TNO, 2008 KV{sub 42}, with an almost polar orbit with inclination 104°, and (418993) = 2009 MS{sub 9}, a scattering object with perihelion in the region of Saturn’s influence, with a  ∼ 400 au and i  = 68°.

Authors:
 [1];  [2]; ; ;  [3];  [4]; ;  [5];  [6];  [7];  [8]
  1. Institut UTINAM, CNRS-UMR 6213, Observatoire de Besançon, BP 1615, F-25010 Besançon Cedex (France)
  2. Herzberg Institute of Astrophysics, National Research Council of Canada, Victoria, BC V9E 2E7 (Canada)
  3. Department of Physics and Astronomy, 6224 Agricultural Road, University of British Columbia, Vancouver, BC (Canada)
  4. Department of Astronomy, University of Washington, Seattle, WA (United States)
  5. Planetary Science Directorate, Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States)
  6. Department of Physics and Astronomy, University of Victoria, Victoria, BC (Canada)
  7. Cornell University, Space Sciences Building, Ithaca, NY 14853 (United States)
  8. Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)
Publication Date:
OSTI Identifier:
22663662
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astronomical Journal (Online); Journal Volume: 153; Journal Issue: 5; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; CANADA; ECLIPSE; FRANCE; INCLINATION; LIMITING VALUES; ORBITS; SATURN PLANET; SCATTERING; SENSITIVITY; SKY

Citation Formats

Petit, J-M., Kavelaars, J. J., Gladman, B. J., Van Laerhoven, C., Lawler, S. M., Jones, R. L., Parker, J. Wm., Bieryla, A., Pike, R. E., Nicholson, P., and Ashby, M. L. N. The Canada–France Ecliptic Plane Survey (CFEPS)—High-latitude Component. United States: N. p., 2017. Web. doi:10.3847/1538-3881/AA6AA5.
Petit, J-M., Kavelaars, J. J., Gladman, B. J., Van Laerhoven, C., Lawler, S. M., Jones, R. L., Parker, J. Wm., Bieryla, A., Pike, R. E., Nicholson, P., & Ashby, M. L. N. The Canada–France Ecliptic Plane Survey (CFEPS)—High-latitude Component. United States. doi:10.3847/1538-3881/AA6AA5.
Petit, J-M., Kavelaars, J. J., Gladman, B. J., Van Laerhoven, C., Lawler, S. M., Jones, R. L., Parker, J. Wm., Bieryla, A., Pike, R. E., Nicholson, P., and Ashby, M. L. N. Mon . "The Canada–France Ecliptic Plane Survey (CFEPS)—High-latitude Component". United States. doi:10.3847/1538-3881/AA6AA5.
@article{osti_22663662,
title = {The Canada–France Ecliptic Plane Survey (CFEPS)—High-latitude Component},
author = {Petit, J-M. and Kavelaars, J. J. and Gladman, B. J. and Van Laerhoven, C. and Lawler, S. M. and Jones, R. L. and Parker, J. Wm. and Bieryla, A. and Pike, R. E. and Nicholson, P. and Ashby, M. L. N.},
abstractNote = {The High Ecliptic Latitude (HiLat) extension of the Canada–France Ecliptic Plane Survey (CFEPS), conducted from 2006 June to 2009 July, discovered a set of Trans-Neptunian objects (TNOs) that we report here. The HiLat component was designed to address one of the shortcomings of ecliptic surveys (like CFEPS), their low sensitivity to high-inclination objects. We searched 701 deg{sup 2} of sky ranging from 12° to 85° ecliptic latitude and discovered 24 TNOs, with inclinations between 15° and 104°. This survey places a very strong constraint on the inclination distribution of the hot component of the classical Kuiper Belt, ruling out any possibility of a large intrinsic fraction of highly inclined orbits. Using the parameterization of Brown, the HiLat sample combined with CFEPS imposes a width 14° ≤  σ  ≤ 15.°5, with a best match for σ  = 14.°5. HiLat discovered the first retrograde TNO, 2008 KV{sub 42}, with an almost polar orbit with inclination 104°, and (418993) = 2009 MS{sub 9}, a scattering object with perihelion in the region of Saturn’s influence, with a  ∼ 400 au and i  = 68°.},
doi = {10.3847/1538-3881/AA6AA5},
journal = {Astronomical Journal (Online)},
number = 5,
volume = 153,
place = {United States},
year = {Mon May 01 00:00:00 EDT 2017},
month = {Mon May 01 00:00:00 EDT 2017}
}
  • We report the orbital distribution of the trans-Neptunian comets discovered during the first discovery year of the Canada-France Ecliptic Plane Survey (CFEPS). CFEPS is a Kuiper Belt object survey based on observations acquired by the Very Wide component of the Canada-France-Hawaii Telescope Legacy Survey (LS-VW). The first year's detections consist of 73 Kuiper Belt objects, 55 of which have now been tracked for three years or more, providing precise orbits. Although this sample size is small compared to the world-wide inventory, because we have an absolutely calibrated and extremely well-characterized survey (with known pointing history) we are able to de-biasmore » our observed population and make unbiased statements about the intrinsic orbital distribution of the Kuiper Belt. By applying the (publically available) CFEPS Survey Simulator to models of the true orbital distribution and comparing the resulting simulated detections to the actual detections made by the survey, we are able to rule out several hypothesized Kuiper Belt object orbit distributions. We find that the main classical belt's so-called 'cold' component is confined in semimajor axis (a) and eccentricity (e) compared to the more extended 'hot' component; the cold component is confined to lower e and does not stretch all the way out to the 2:1 resonance but rather depletes quickly beyond a = 45 AU. For the cold main classical belt population we find a robust population estimate of N(H{sub g} < 10) = 50 {+-} 5 x 10{sup 3} and find that the hot component of the main classical belt represents {approx}60% of the total population. The inner classical belt (sunward of the 3:2 mean-motion resonance) has a population of roughly 2000 trans-Neptunian objects with absolute magnitudes H{sub g} < 10, and may not share the inclination distribution of the main classical belt. We also find that the plutino population lacks a cold low-inclination component, and so, the population is somewhat larger than recent estimates; our analysis shows a plutino population of N(H{sub g} < 10){approx} 25{sup +25} {sub -12} x 10{sup 3}compared to our estimate of the size of main classical Kuiper Belt population of N(H{sub g} < 10) {approx} (126{sup +50} {sub -46}) x 10{sup 3}.« less
  • We report the orbital distribution of the trans-Neptunian objects (TNOs) discovered during the Canada-France Ecliptic Plane Survey (CFEPS), whose discovery phase ran from early 2003 until early 2007. The follow-up observations started just after the first discoveries and extended until late 2009. We obtained characterized observations of 321 deg{sup 2} of sky to depths in the range g {approx} 23.5-24.4 AB mag. We provide a database of 169 TNOs with high-precision dynamical classification and known discovery efficiency. Using this database, we find that the classical belt is a complex region with sub-structures that go beyond the usual splitting of innermore » (interior to 3:2 mean-motion resonance [MMR]), main (between 3:2 and 2:1 MMR), and outer (exterior to 2:1 MMR). The main classical belt (a = 40-47 AU) needs to be modeled with at least three components: the 'hot' component with a wide inclination distribution and two 'cold' components (stirred and kernel) with much narrower inclination distributions. The hot component must have a significantly shallower absolute magnitude (H{sub g} ) distribution than the other two components. With 95% confidence, there are 8000{sup +1800}{sub -1600} objects in the main belt with H{sub g} {<=} 8.0, of which 50% are from the hot component, 40% from the stirred component, and 10% from the kernel; the hot component's fraction drops rapidly with increasing H{sub g} . Because of this, the apparent population fractions depend on the depth and ecliptic latitude of a trans-Neptunian survey. The stirred and kernel components are limited to only a portion of the main belt, while we find that the hot component is consistent with a smooth extension throughout the inner, main, and outer regions of the classical belt; in fact, the inner and outer belts are consistent with containing only hot-component objects. The H{sub g} {<=} 8.0 TNO population estimates are 400 for the inner belt and 10,000 for the outer belt to within a factor of two (95% confidence). We show how the CFEPS Survey Simulator can be used to compare a cosmogonic model for the orbital element distribution to the real Kuiper Belt.« less
  • Main-belt asteroids have been continuously colliding with one another since they were formed. Their size distribution is primarily determined by the size dependence of asteroid strength against catastrophic impacts. The strength scaling law as a function of body size could depend on collision velocity, but the relationship remains unknown, especially under hypervelocity collisions comparable to 10 km s{sup –1}. We present a wide-field imaging survey at an ecliptic latitude of about 25° for investigating the size distribution of small main-belt asteroids that have highly inclined orbits. The analysis technique allowing for efficient asteroid detections and high-accuracy photometric measurements provides sufficientmore » sample data to estimate the size distribution of sub-kilometer asteroids with inclinations larger than 14°. The best-fit power-law slopes of the cumulative size distribution are 1.25 ± 0.03 in the diameter range of 0.6-1.0 km and 1.84 ± 0.27 in 1.0-3.0 km. We provide a simple size distribution model that takes into consideration the oscillations of the power-law slope due to the transition from the gravity-scaled regime to the strength-scaled regime. We find that the high-inclination population has a shallow slope of the primary components of the size distribution compared to the low-inclination populations. The asteroid population exposed to hypervelocity impacts undergoes collisional processes where large bodies have a higher disruptive strength and longer lifespan relative to tiny bodies than the ecliptic asteroids.« less
  • We present imaging and spectroscopic observations for six quasars at z {>=} 5.9 discovered by the Canada-France High-z Quasar Survey (CFHQS). The CFHQS contains subsurveys with a range of flux and area combinations to sample a wide range of quasar luminosities at z {approx} 6. The new quasars have luminosities 10-75 times lower than the most luminous Sloan Digital Sky Survey quasars at this redshift. The least luminous quasar, CFHQS J0216-0455 at z = 6.01, has absolute magnitude M {sub 1450} = -22.21, well below the likely break in the luminosity function. This quasar is not detected in a deepmore » XMM-Newton survey showing that optical selection is still a very efficient tool for finding high-redshift quasars.« less
  • We present discovery imaging and spectroscopy for nine new z {approx} 6 quasars found in the Canada-France High-z Quasar Survey (CFHQS) bringing the total number of CFHQS quasars to 19. By combining the CFHQS with the more luminous Sloan Digital Sky Survey sample, we are able to derive the quasar luminosity function from a sample of 40 quasars at redshifts 5.74 < z < 6.42. Our binned luminosity function shows a slightly lower normalization and flatter slope than found in previous work. The binned data also suggest a break in the luminosity function at M {sub 1450} {approx} -25. Amore » double power-law maximum likelihood fit to the data is consistent with the binned results. The luminosity function is strongly constrained (1{sigma} uncertainty <0.1 dex) over the range -27.5 < M {sub 1450} < -24.7. The best-fit parameters are {phi}(M*{sub 1450}) = 1.14 x 10{sup -8} Mpc{sup -3} mag{sup -1}, break magnitude M*{sub 1450} = -25.13, and bright end slope {beta} = -2.81. However, the covariance between {beta} and M*{sub 1450} prevents strong constraints being placed on either parameter. For a break magnitude in the range -26 < M*{sub 1450} < -24, we find -3.8 < {beta} < -2.3 at 95% confidence. We calculate the z = 6 quasar intergalactic ionizing flux and show it is between 20 and 100 times lower than that necessary for reionization. Finally, we use the luminosity function to predict how many higher redshift quasars may be discovered in future near-IR imaging surveys.« less