skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A New Stellar Atmosphere Grid and Comparisons with HST /STIS CALSPEC Flux Distributions

Abstract

The Space Telescope Imaging Spectrograph has measured the spectral energy distributions for several stars of types O, B, A, F, and G. These absolute fluxes from the CALSPEC database are fit with a new spectral grid computed from the ATLAS-APOGEE ATLAS9 model atmosphere database using a chi-square minimization technique in four parameters. The quality of the fits are compared for complete LTE grids by Castelli and Kurucz (CK04) and our new comprehensive LTE grid (BOSZ). For the cooler stars, the fits with the MARCS LTE grid are also evaluated, while the hottest stars are also fit with the NLTE Lanz and Hubeny OB star grids. Unfortunately, these NLTE models do not transition smoothly in the infrared to agree with our new BOSZ LTE grid at the NLTE lower limit of T {sub eff} = 15,000 K. The new BOSZ grid is available via the Space Telescope Institute MAST archive and has a much finer sampled IR wavelength scale than CK04, which will facilitate the modeling of stars observed by the James Webb Space Telescope . Our result for the angular diameter of Sirius agrees with the ground-based interferometric value.

Authors:
; ; ;  [1]; ;  [2]
  1. Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)
  2. ELTE Gothard Astrophysical Observatory, H-9700 Szombathely, Szent Imre Herceg St. 112 (Hungary)
Publication Date:
OSTI Identifier:
22663661
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astronomical Journal (Online); Journal Volume: 153; Journal Issue: 5; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; COMPARATIVE EVALUATIONS; ENERGY SPECTRA; INTERFEROMETRY; SPACE; STAR MODELS; STARS; STELLAR ATMOSPHERES; TELESCOPES; WAVELENGTHS

Citation Formats

Bohlin, Ralph C., Fleming, Scott W., Gordon, Karl D., Koekemoer, Anton M., Mészáros, Szabolcs, and Kovács, József. A New Stellar Atmosphere Grid and Comparisons with HST /STIS CALSPEC Flux Distributions. United States: N. p., 2017. Web. doi:10.3847/1538-3881/AA6BA9.
Bohlin, Ralph C., Fleming, Scott W., Gordon, Karl D., Koekemoer, Anton M., Mészáros, Szabolcs, & Kovács, József. A New Stellar Atmosphere Grid and Comparisons with HST /STIS CALSPEC Flux Distributions. United States. doi:10.3847/1538-3881/AA6BA9.
Bohlin, Ralph C., Fleming, Scott W., Gordon, Karl D., Koekemoer, Anton M., Mészáros, Szabolcs, and Kovács, József. Mon . "A New Stellar Atmosphere Grid and Comparisons with HST /STIS CALSPEC Flux Distributions". United States. doi:10.3847/1538-3881/AA6BA9.
@article{osti_22663661,
title = {A New Stellar Atmosphere Grid and Comparisons with HST /STIS CALSPEC Flux Distributions},
author = {Bohlin, Ralph C. and Fleming, Scott W. and Gordon, Karl D. and Koekemoer, Anton M. and Mészáros, Szabolcs and Kovács, József},
abstractNote = {The Space Telescope Imaging Spectrograph has measured the spectral energy distributions for several stars of types O, B, A, F, and G. These absolute fluxes from the CALSPEC database are fit with a new spectral grid computed from the ATLAS-APOGEE ATLAS9 model atmosphere database using a chi-square minimization technique in four parameters. The quality of the fits are compared for complete LTE grids by Castelli and Kurucz (CK04) and our new comprehensive LTE grid (BOSZ). For the cooler stars, the fits with the MARCS LTE grid are also evaluated, while the hottest stars are also fit with the NLTE Lanz and Hubeny OB star grids. Unfortunately, these NLTE models do not transition smoothly in the infrared to agree with our new BOSZ LTE grid at the NLTE lower limit of T {sub eff} = 15,000 K. The new BOSZ grid is available via the Space Telescope Institute MAST archive and has a much finer sampled IR wavelength scale than CK04, which will facilitate the modeling of stars observed by the James Webb Space Telescope . Our result for the angular diameter of Sirius agrees with the ground-based interferometric value.},
doi = {10.3847/1538-3881/AA6BA9},
journal = {Astronomical Journal (Online)},
number = 5,
volume = 153,
place = {United States},
year = {Mon May 01 00:00:00 EDT 2017},
month = {Mon May 01 00:00:00 EDT 2017}
}
  • The circumgalactic medium (CGM) of late-type galaxies is characterized using UV spectroscopy of 11 targeted QSO/galaxy pairs at z {<=} 0.02 with the Hubble Space Telescope Cosmic Origins Spectrograph (COS) and {approx}60 serendipitous absorber/galaxy pairs at z {<=} 0.2 with the Space Telescope Imaging Spectrograph. CGM warm cloud properties are derived, including volume filling factors of 3%-5%, cloud sizes of 0.1-30 kpc, masses of 10-10{sup 8} M {sub Sun }, and metallicities of {approx}0.1-1 Z {sub Sun }. Almost all warm CGM clouds within 0.5 R {sub vir} are metal-bearing and many have velocities consistent with being bound, 'galactic fountain'more » clouds. For galaxies with L {approx}> 0.1 L*, the total mass in these warm CGM clouds approaches 10{sup 10} M {sub Sun }, {approx}10%-15% of the total baryons in massive spirals and comparable to the baryons in their parent galaxy disks. This leaves {approx}> 50% of massive spiral-galaxy baryons 'missing'. Dwarfs (<0.1 L*) have smaller area covering factors and warm CGM masses ({<=}5% baryon fraction), suggesting that many of their warm clouds escape. Constant warm cloud internal pressures as a function of impact parameter (P/k {approx} 10 cm{sup -3} K) support the inference that previous COS detections of broad, shallow O VI and Ly{alpha} absorptions are of an extensive ({approx}400-600 kpc), hot (T Almost-Equal-To 10{sup 6} K), intra-cloud gas which is very massive ({>=}10{sup 11} M {sub Sun }). While the warm CGM clouds cannot account for all the 'missing baryons' in spirals, the hot intra-group gas can, and could account for {approx}20% of the cosmic baryon census at z {approx} 0 if this hot gas is ubiquitous among spiral groups.« less
  • We present a comprehensive catalog of ultraviolet (HST/STIS and FUSE) absorbers in the low-redshift intergalactic medium (IGM) at z < 0.4. The catalog draws from much of the extensive literature on IGM absorption and reconciles discrepancies among several previous catalogs through a critical evaluation of all reported absorption features in light of new HST/COS data. We report on 746 H I absorbers down to a rest-frame equivalent width of 12 mA over a maximum redshift path length {Delta}z = 5.38. We also confirm 111 O VI absorbers, 29 C IV absorbers, and numerous absorption lines due to other metal ions.more » We characterize the bivariate distribution of absorbers in redshift and column density as a power law, {partial_derivative}{sup 2}N/{partial_derivative}z{partial_derivative}N) {proportional_to} N{sup -{beta}}, where {beta} = 2.08 {+-} 0.12 for O VI and {beta} = 1.68 {+-} 0.03 for H I. Utilizing a more sophisticated accounting technique than past work, our catalog accounts for {approx}43% of the baryons: 24% {+-} 2% in the photoionized Ly{alpha} forest and 19% {+-} 2% in the warm-hot IGM as traced by O VI. We discuss the large systematic effects of various assumed metallicities and ionization states on these calculations, and we implement recent simulation results in our estimates.« less
  • Spatially resolved scattered-light images of circumstellar debris in exoplanetary systems constrain the physical properties and orbits of the dust particles in these systems. They also inform on co-orbiting (but unseen) planets, the systemic architectures, and forces perturbing the starlight-scattering circumstellar material. Using Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph (STIS) broadband optical coronagraphy, we have completed the observational phase of a program to study the spatial distribution of dust in a sample of 10 circumstellar debris systems and 1 'mature' protoplanetrary disk, all with HST pedigree, using point-spread-function-subtracted multi-roll coronagraphy. These observations probe stellocentric distances ≥5 AU for the nearestmore » systems, and simultaneously resolve disk substructures well beyond corresponding to the giant planet and Kuiper Belt regions within our own solar system. They also disclose diffuse very low-surface-brightness dust at larger stellocentric distances. Herein we present new results inclusive of fainter disks such as HD 92945 (F {sub disk}/F {sub star} = 5 × 10{sup –5}), confirming, and better revealing, the existence of a narrow inner debris ring within a larger diffuse dust disk. Other disks with ring-like substructures and significant asymmetries and complex morphologies include HD 181327, for which we posit a spray of ejecta from a recent massive collision in an exo-Kuiper Belt; HD 61005, suggested to be interacting with the local interstellar medium; and HD 15115 and HD 32297, also discussed in the context of putative environmental interactions. These disks and HD 15745 suggest that debris system evolution cannot be treated in isolation. For AU Mic's edge-on disk, we find out-of-plane surface brightness asymmetries at ≥5 AU that may implicate the existence of one or more planetary perturbers. Time-resolved images of the MP Mus protoplanetary disk provide spatially resolved temporal variability in the disk illumination. These and other new images from our HST/STIS GO/12228 program enable direct inter-comparison of the architectures of these exoplanetary debris systems in the context of our own solar system.« less
  • Using a sample of ∼100 nearby line-emitting galaxy nuclei, we have built the currently definitive atlas of spectroscopic measurements of Hα and neighboring emission lines at subarcsecond scales. We employ these data in a quantitative comparison of the nebular emission in Hubble Space Telescope (HST) and ground-based apertures, which offer an order-of-magnitude difference in contrast, and provide new statistical constraints on the degree to which transition objects and low-ionization nuclear emission-line regions (LINERs) are powered by an accreting black hole at ≲10 pc. We show that while the small-aperture observations clearly resolve the nebular emission, the aperture dependence in themore » line ratios is generally weak, and this can be explained by gradients in the density of the line-emitting gas: the higher densities in the more nuclear regions potentially flatten the excitation gradients, suppressing the forbidden emission. The transition objects show a threefold increase in the incidence of broad Hα emission in the high-resolution data, as well as the strongest density gradients, supporting the composite model for these systems as accreting sources surrounded by star-forming activity. The narrow-line LINERs appear to be the weaker counterparts of the Type 1 LINERs, where the low accretion rates cause the disappearance of the broad-line component. The enhanced sensitivity of the HST observations reveals a 30% increase in the incidence of accretion-powered systems at z ≈ 0. A comparison of the strength of the broad-line emission detected at different epochs implies potential broad-line variability on a decade-long timescale, with at least a factor of three in amplitude.« less
  • The goal of the present study is twofold. First, we employ new HST/STIS spectra and photoionization modeling techniques to determine the progenitor masses of eight planetary nebulae (IC 2165, IC 3568, NGC 2440, NGC 3242, NGC 5315, NGC 5882, NGC 7662, and PB 6). Second, for the first time we are able to compare each object’s observed nebular abundances of helium, carbon, and nitrogen with abundance predictions of these same elements by a stellar model that is consistent with each object’s progenitor mass. Important results include the following: (1) the mass range of our objects’ central stars matches well withmore » the mass distribution of other central stars of planetary nebulae and white dwarfs; (2) He/H is above solar in all of our objects, in most cases likely due to the predicted effects of first dredge-up; (3) most of our objects show negligible C enrichment, probably because their low masses preclude third dredge-up; (4) C/O versus O/H for our objects appears to be inversely correlated, which is perhaps consistent with the conclusion of theorists that the extent of atmospheric carbon enrichment from first dredge-up is sensitive to a parameter whose value increases as metallicity declines; (5) stellar model predictions of nebular C and N enrichment are consistent with observed abundances for progenitor star masses ≤1.5 M{sub ⊙}. Finally, we present the first published photoionization models of NGC 5315 and NGC 5882.« less