skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nucleation of Small Silicon Carbide Dust Clusters in AGB Stars

Abstract

Silicon carbide (SiC) grains are a major dust component in carbon-rich asymptotic giant branch stars. However, the formation pathways of these grains are not fully understood. We calculate ground states and energetically low-lying structures of (SiC){sub n}, n = 1, 16 clusters by means of simulated annealing and Monte Carlo simulations of seed structures and subsequent quantum-mechanical calculations on the density functional level of theory. We derive the infrared (IR) spectra of these clusters and compare the IR signatures to observational and laboratory data. According to energetic considerations, we evaluate the viability of SiC cluster growth at several densities and temperatures, characterizing various locations and evolutionary states in circumstellar envelopes. We discover new, energetically low-lying structures for Si{sub 4}C{sub 4}, Si{sub 5}C{sub 5}, Si{sub 15}C{sub 15}, and Si{sub 16}C{sub 16} and new ground states for Si{sub 10}C{sub 10} and Si{sub 15}C{sub 15}. The clusters with carbon-segregated substructures tend to be more stable by 4–9 eV than their bulk-like isomers with alternating Si–C bonds. However, we find ground states with cage geometries resembling buckminsterfullerens (“bucky-like”) for Si{sub 12}C{sub 12} and Si{sub 16}C{sub 16} and low-lying stable cage structures for n ≥ 12. The latter findings thus indicate a regime of clustermore » sizes that differ from small clusters as well as from large-scale crystals. Thus—and owing to their stability and geometry—the latter clusters may mark a transition from a quantum-confined cluster regime to a crystalline, solid bulk-material. The calculated vibrational IR spectra of the ground-state SiC clusters show significant emission. They include the 10–13 μ m wavelength range and the 11.3 μm feature inferred from laboratory measurements and observations, respectively, although the overall intensities are rather low.« less

Authors:
; ;  [1];  [2]
  1. Osservatorio Astronomico di Teramo, INAF, I-64100 Teramo (Italy)
  2. Departament de Cincia de Materials i Química Fisica and Institut de Química Terica i Computacional (IQTCUB),Universitat de Barcelona, E-08028 Barcelona (Spain)
Publication Date:
OSTI Identifier:
22663604
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 840; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; CARBON; COMPUTERIZED SIMULATION; CRYSTALS; DENSITY; DENSITY FUNCTIONAL METHOD; DUSTS; EMISSION; GROUND STATES; INFRARED SPECTRA; MOLECULES; MONTE CARLO METHOD; QUANTUM MECHANICS; SILICON; SILICON CARBIDES; SOLIDS; STAR CLUSTERS; STARS; WAVELENGTHS

Citation Formats

Gobrecht, David, Cristallo, Sergio, Piersanti, Luciano, and Bromley, Stefan T. Nucleation of Small Silicon Carbide Dust Clusters in AGB Stars. United States: N. p., 2017. Web. doi:10.3847/1538-4357/AA6DB0.
Gobrecht, David, Cristallo, Sergio, Piersanti, Luciano, & Bromley, Stefan T. Nucleation of Small Silicon Carbide Dust Clusters in AGB Stars. United States. doi:10.3847/1538-4357/AA6DB0.
Gobrecht, David, Cristallo, Sergio, Piersanti, Luciano, and Bromley, Stefan T. Wed . "Nucleation of Small Silicon Carbide Dust Clusters in AGB Stars". United States. doi:10.3847/1538-4357/AA6DB0.
@article{osti_22663604,
title = {Nucleation of Small Silicon Carbide Dust Clusters in AGB Stars},
author = {Gobrecht, David and Cristallo, Sergio and Piersanti, Luciano and Bromley, Stefan T.},
abstractNote = {Silicon carbide (SiC) grains are a major dust component in carbon-rich asymptotic giant branch stars. However, the formation pathways of these grains are not fully understood. We calculate ground states and energetically low-lying structures of (SiC){sub n}, n = 1, 16 clusters by means of simulated annealing and Monte Carlo simulations of seed structures and subsequent quantum-mechanical calculations on the density functional level of theory. We derive the infrared (IR) spectra of these clusters and compare the IR signatures to observational and laboratory data. According to energetic considerations, we evaluate the viability of SiC cluster growth at several densities and temperatures, characterizing various locations and evolutionary states in circumstellar envelopes. We discover new, energetically low-lying structures for Si{sub 4}C{sub 4}, Si{sub 5}C{sub 5}, Si{sub 15}C{sub 15}, and Si{sub 16}C{sub 16} and new ground states for Si{sub 10}C{sub 10} and Si{sub 15}C{sub 15}. The clusters with carbon-segregated substructures tend to be more stable by 4–9 eV than their bulk-like isomers with alternating Si–C bonds. However, we find ground states with cage geometries resembling buckminsterfullerens (“bucky-like”) for Si{sub 12}C{sub 12} and Si{sub 16}C{sub 16} and low-lying stable cage structures for n ≥ 12. The latter findings thus indicate a regime of cluster sizes that differ from small clusters as well as from large-scale crystals. Thus—and owing to their stability and geometry—the latter clusters may mark a transition from a quantum-confined cluster regime to a crystalline, solid bulk-material. The calculated vibrational IR spectra of the ground-state SiC clusters show significant emission. They include the 10–13 μ m wavelength range and the 11.3 μm feature inferred from laboratory measurements and observations, respectively, although the overall intensities are rather low.},
doi = {10.3847/1538-4357/AA6DB0},
journal = {Astrophysical Journal},
number = 2,
volume = 840,
place = {United States},
year = {Wed May 10 00:00:00 EDT 2017},
month = {Wed May 10 00:00:00 EDT 2017}
}
  • The DUSTiNGS survey (DUST in Nearby Galaxies with Spitzer) is a 3.6 and 4.5 μm imaging survey of 50 nearby dwarf galaxies designed to identify dust-producing asymptotic giant branch (AGB) stars and massive stars. Using two epochs, spaced approximately six months apart, we identify a total of 526 dusty variable AGB stars (sometimes called ''extreme'' or x-AGB stars; [3.6]-[4.5] > 0.1 mag). Of these, 111 are in galaxies with [Fe/H] < –1.5 and 12 are in galaxies with [Fe/H] < –2.0, making them the most metal-poor dust-producing AGB stars known. We compare these identifications to those in the literature andmore » find that most are newly discovered large-amplitude variables, with the exception of ≈30 stars in NGC 185 and NGC 147, 1 star in IC 1613, and 1 star in Phoenix. The chemical abundances of the x-AGB variables are unknown, but the low metallicities suggest that they are more likely to be carbon-rich than oxygen-rich and comparisons with existing optical and near-IR photometry confirm that 70 of the x-AGB variables are confirmed or likely carbon stars. We see an increase in the pulsation amplitude with increased dust production, supporting previous studies suggesting that dust production and pulsation are linked. We find no strong evidence linking dust production with metallicity, indicating that dust can form in very metal-poor environments.« less
  • We present various infrared two-color diagrams (2CDs) for asymptotic giant branch (AGB) stars, post-AGB stars, and Planetary Nebulae (PNe) and investigate possible evolutionary tracks. We use catalogs from the available literature for the sample of 4903 AGB stars (3373 O-rich; 1168 C-rich; 362 S-type), 660 post-AGB stars (326 post-AGB; 334 pre-PN), and 1510 PNe in our Galaxy. For each object in the catalog, we cross-identify the IRAS, AKARI, Midcourse Space Experiment, and 2MASS counterparts. The IR 2CDs can provide useful information about the structure and evolution of the dust envelopes as well as the central stars. To find possible evolutionarymore » tracks from AGB stars to PNe on the 2CDs, we investigate spectral evolution of post-AGB stars by making simple but reasonable assumptions on the evolution of the central star and dust shell. We perform radiative transfer model calculations for the detached dust shells around evolving central stars in the post-AGB phase. We find that the theoretical dust shell model tracks using dust opacity functions of amorphous silicate and amorphous carbon roughly coincide with the densely populated observed points of AGB stars, post-AGB stars, and PNe on various IR 2CDs. Even though some discrepancies are inevitable, the end points of the theoretical post-AGB model tracks generally converge in the region of the observed points of PNe on most 2CDs.« less
  • We estimate the total dust input from the cool evolved stars in the Small Magellanic Cloud, using the 8 {mu}m excess emission as a proxy for the dust-production rate (DPR). We find that asymptotic giant branch (AGB) and red supergiant (RSG) stars produce (8.6-9.5) Multiplication-Sign 10{sup -7} M{sub Sun} yr{sup -1} of dust, depending on the fraction of far-infrared sources that belong to the evolved star population (with 10%-50% uncertainty in individual DPRs). RSGs contribute the least (<4%), while carbon-rich AGB stars (especially the so-called extreme AGB stars) account for 87%-89% of the total dust input from cool evolved stars.more » We also estimate the dust input from hot stars and supernovae (SNe), and find that if SNe produce 10{sup -3} M{sub Sun} of dust each, then the total SN dust input and AGB input are roughly equivalent. We consider several scenarios of SN dust production and destruction and find that the interstellar medium (ISM) dust can be accounted for solely by stellar sources if all SNe produce dust in the quantities seen around the dustiest examples and if most SNe explode in dense regions where much of the ISM dust is shielded from the shocks. We find that AGB stars contribute only 2.1% of the ISM dust. Without a net positive contribution from SNe to the dust budget, this suggests that dust must grow in the ISM or be formed by another unknown mechanism.« less
  • A {gamma}-ray spectroscopy study of {sup 26g}Al+p resonant states in {sup 27}Si is presented. Excitation energies were measured with improved precision and first spin-parity assignments made for excited states in {sup 27}Si above the proton threshold. The results indicate the presence of low-lying resonances with I{sub p} = 0 and I{sub p} = 2 captures that could strongly influence the {sup 26g}Al(p,{gamma}){sup 27}Si reaction rate at low stellar temperatures, found in low-mass asymptotic giant branch (AGB), intermediate-mass AGB, super AGB, and Wolf-Rayet stars.
  • A {gamma}-ray spectroscopy study of {sup 26g}Al+p resonant states in {sup 27}Si is presented. Excitation energies were measured with improved precision and first spin-parity assignments made for excited states in {sup 27}Si above the proton threshold. The results indicate the presence of low-lying resonances with l{sub p}=0 and l{sub p}=2 captures that could strongly influence the {sup 26g}Al(p,{gamma}){sup 27}Si reaction rate at low stellar temperatures, found in low-mass asymptotic giant branch (AGB), intermediate-mass AGB, super AGB, and Wolf-Rayet stars.