skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Intrinsic Far-infrared Continua of Type-1 Quasars

Abstract

The range of currently proposed active galactic nucleus (AGN) far-infrared templates results in uncertainties in retrieving host galaxy information from infrared observations and also undermines constraints on the outer part of the AGN torus. We discuss how to test and reconcile these templates. Physically, the fraction of the intrinsic AGN IR-processed luminosity compared with that from the central engine should be consistent with the dust-covering factor. In addition, besides reproducing the composite spectral energy distributions (SEDs) of quasars, a correct AGN IR template combined with an accurate library of star-forming galaxy templates should be able to reproduce the IR properties of the host galaxies, such as the luminosity-dependent SED shapes and aromatic feature strengths. We develop tests based on these expected behaviors and find that the shape of the AGN intrinsic far-IR emission drops off rapidly starting at ∼20 μ m and can be matched by an Elvis et al.-like template with a minor modification. Despite the variations in the near- to mid-IR bands, AGNs in quasars and Seyfert galaxies have remarkably similar intrinsic far-IR SEDs at λ ∼ 20–100 μ m, suggesting a similar emission character of the outermost region of the circumnuclear torus. The variations of the intrinsicmore » AGN IR SEDs among the type-1 quasar population can be explained by the changing relative strengths of four major dust components with similar characteristic temperatures, and there is evidence for compact AGN-heated dusty structures at sub-kiloparsec scales in the far-IR.« less

Authors:
;  [1]
  1. Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)
Publication Date:
OSTI Identifier:
22663567
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 841; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; AROMATICS; COMPARATIVE EVALUATIONS; COVERINGS; DUSTS; EMISSION; ENERGY SPECTRA; LIMITING VALUES; LUMINOSITY; MODIFICATIONS; QUASARS; SEYFERT GALAXIES; STARS

Citation Formats

Lyu, Jianwei, and Rieke, George H., E-mail: jianwei@email.arizona.edu. The Intrinsic Far-infrared Continua of Type-1 Quasars. United States: N. p., 2017. Web. doi:10.3847/1538-4357/AA7051.
Lyu, Jianwei, & Rieke, George H., E-mail: jianwei@email.arizona.edu. The Intrinsic Far-infrared Continua of Type-1 Quasars. United States. doi:10.3847/1538-4357/AA7051.
Lyu, Jianwei, and Rieke, George H., E-mail: jianwei@email.arizona.edu. Thu . "The Intrinsic Far-infrared Continua of Type-1 Quasars". United States. doi:10.3847/1538-4357/AA7051.
@article{osti_22663567,
title = {The Intrinsic Far-infrared Continua of Type-1 Quasars},
author = {Lyu, Jianwei and Rieke, George H., E-mail: jianwei@email.arizona.edu},
abstractNote = {The range of currently proposed active galactic nucleus (AGN) far-infrared templates results in uncertainties in retrieving host galaxy information from infrared observations and also undermines constraints on the outer part of the AGN torus. We discuss how to test and reconcile these templates. Physically, the fraction of the intrinsic AGN IR-processed luminosity compared with that from the central engine should be consistent with the dust-covering factor. In addition, besides reproducing the composite spectral energy distributions (SEDs) of quasars, a correct AGN IR template combined with an accurate library of star-forming galaxy templates should be able to reproduce the IR properties of the host galaxies, such as the luminosity-dependent SED shapes and aromatic feature strengths. We develop tests based on these expected behaviors and find that the shape of the AGN intrinsic far-IR emission drops off rapidly starting at ∼20 μ m and can be matched by an Elvis et al.-like template with a minor modification. Despite the variations in the near- to mid-IR bands, AGNs in quasars and Seyfert galaxies have remarkably similar intrinsic far-IR SEDs at λ ∼ 20–100 μ m, suggesting a similar emission character of the outermost region of the circumnuclear torus. The variations of the intrinsic AGN IR SEDs among the type-1 quasar population can be explained by the changing relative strengths of four major dust components with similar characteristic temperatures, and there is evidence for compact AGN-heated dusty structures at sub-kiloparsec scales in the far-IR.},
doi = {10.3847/1538-4357/AA7051},
journal = {Astrophysical Journal},
number = 2,
volume = 841,
place = {United States},
year = {Thu Jun 01 00:00:00 EDT 2017},
month = {Thu Jun 01 00:00:00 EDT 2017}
}
  • We use the Spitzer Space Telescope Enhanced Imaging Products and the Spitzer Archival Far-InfraRed Extragalactic Survey to study the spectral energy distributions (SEDs) of spectroscopically confirmed type 1 quasars selected from the Sloan Digital Sky Survey (SDSS). By combining the Spitzer and SDSS data with the Two Micron All Sky Survey, we are able to construct a statistically robust rest-frame 0.1-100 {mu}m type 1 quasar template. We find that the quasar population is well-described by a single power-law SED at wavelengths less than 20 {mu}m, in good agreement with previous work. However, at longer wavelengths, we find a significant excessmore » in infrared luminosity above an extrapolated power-law, along with significant object-to-object dispersion in the SED. The mean excess reaches a maximum of 0.8 dex at rest-frame wavelengths near 100 {mu}m.« less
  • We present JHK near-infrared (NIR) spectroscopy of 25 candidate Type II quasars selected from the Sloan Digital Sky Survey (SDSS), using Triplespec on the Apache Point Observatory 3.5 m telescope, the Folded-port InfraRed Echellette at the Magellan/Baade 6.5 m telescope, and the Gemini Near-Infrared Spectrograph on Gemini. At redshifts of 2 < z < 3.4, our NIR spectra probe the rest-frame optical region of these targets, which were initially selected to have strong lines of C IV and Ly α, with FWHM < 2000 km s{sup –1} from the SDSS pipeline. We use the [O III] λ5007 line shape asmore » a model for the narrow-line region emission and find that Hα consistently requires a broad component with FWHMs ranging from 1000 to 7500 km s{sup –1}. Interestingly, the C IV lines also require broad bases, but with considerably narrower widths of 1000-4500 km s{sup –1}. Estimating the extinction using the Balmer decrement and also the relationship in lower-z quasars between rest equivalent width and luminosity in the [O III] line, we find typical A{sub V} values of 0-2 mag, which naturally explains the attenuated C IV lines relative to Hα. We propose that our targets are moderately obscured quasars. We also describe one unusual object with three distinct velocity peaks in its [O III] spectrum.« less
  • We model the optical to far-infrared spectral energy distributions (SEDs) of a sample of six type-1 and six type-2 quasars selected in the mid-infrared. The objects in our sample are matched in mid-IR luminosity and selected based on their Spitzer IRAC colors. We obtained new targeted Spitzer Infrared Spectrograph and Multiband Imaging Photometer for Spitzer observations and used archival photometry to examine the optical to far-IR SEDs. We investigate whether the observed differences between samples are consistent with orientation-based unification schemes. The type-1 objects show significant emission at 3 mum. They do not show strong polycyclic aromatic hydrocarbon (PAH) emissionmore » and have less far-IR emission on average when compared to the type-2 objects. The SEDs of the type-2 objects show a wide assortment of silicate features, ranging from weak emission to deep silicate absorption. Some also show strong PAH features. In comparison, silicate is only seen in emission in the type-1 objects. This is consistent with some of the type-2's being reddened by a foreground screen of cooler dust, perhaps in the host galaxy itself. We investigate the active galactic nucleus contribution to the far-IR emission and find it to be significant. We also estimate the star formation rate (SFR) for each of the objects by integrating the modeled far-IR flux and compare this with the SFR found from PAH emission. We find that the type-2 quasars have a higher average SFR than the type-1 quasars based on both methods, though this could be due to differences in bolometric luminosities of the objects. While we find pronounced differences between the two types of objects, none of them are inconsistent with orientation-based unification schemes.« less
  • The far-infrared properties of 10, optically selected quasars were studied on the basis of pointed IRAS observations and ground-based near-infrared and radio measurements. Nine of these quasars were detected in at least three IRAS bands. The flat spectral energy distributions characterizing these optically selected quasars together with large 60-100-micron luminosities suggest that the infrared emission is dominated by nonthermal radiation. Seven of the nine quasars with far-infrared detections were found to have low-frequency turnovers. 12 references.
  • Spectral energy distributions of 36 radio-quiet quasars covering observed wavelengths of 0.3-100 microns are presented using data from the published literature. All have IRAS detections or interesting upper limits. Most of the objects are low-luminosity quasars, but several are moderate to high in luminosity. The continua show a variety of shapes which can be explained as a combination of three components: a flat power-law optical continuum, a convex infrared continuum produced by warm dust heated directly by the quasar UV, and a host galaxy component consisting of starlight and cool dust emission. Evidence for contaminating emission from host galaxies ismore » given in plots of optical and near-infrared spectral indices versus quasar luminosity. Low-luminosity objects tend to have flatter near-infrared and steeper optical spectral indices relative to higher luminosity objects, consistent with the addition of the starlight components. 68 refs.« less