skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Properties of Spectrally Defined Red QSOs at z = 0.3–1.2

Abstract

We investigated the properties of a sample of red Quasi-stellar Objects (QSOs) using optical, radio, and infrared data. These QSOs were selected from the Sloan Digital Sky Survey Data Release 7 quasar catalog. We only selected sources with sky coverage in the Very Large Array Faint Images of the Radio Sky at Twenty-centimeters survey, and searched for sources with Wide-field Infrared Survey Explorer counterparts. We defined the spectral color of the QSOs based on the flux ratio of the rest-frame 4000 to 3000 Å continuum emission to select red QSOs and typical QSOs. In accordance with this criterion, only QSOs with redshifts between 0.3 and 1.2 could be selected. We found that red QSOs have stronger infrared emission than typical QSOs. We noted that the number ratios of red QSOs to typical QSOs decrease with increasing redshifts, although the number of typical QSOs increase with redshifts. Furthermore, at high redshifts, the luminosity distributions of typical QSOs and red QSOs seem to have similar peaks; however, at low redshifts, the luminosities of red QSOs seem to be lower than those of typical QSOs. These findings suggest that there might be at least two types of red QSOs in our QSO samples.

Authors:
;  [1]
  1. Institute of Astronomy, National Central University, No. 300, Jhongda Rd., Jhongli, Taoyuan 32001, Taiwan (China)
Publication Date:
OSTI Identifier:
22663507
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 842; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; CATALOGS; DISTRIBUTION; EMISSION; LUMINOSITY; QUASARS; RED SHIFT; STARS

Citation Formats

Tsai, A.-L., and Hwang, C.-Y., E-mail: altsai@astro.ncu.edu.tw, E-mail: hwangcy@astro.ncu.edu.tw. Properties of Spectrally Defined Red QSOs at z = 0.3–1.2. United States: N. p., 2017. Web. doi:10.3847/1538-4357/AA745B.
Tsai, A.-L., & Hwang, C.-Y., E-mail: altsai@astro.ncu.edu.tw, E-mail: hwangcy@astro.ncu.edu.tw. Properties of Spectrally Defined Red QSOs at z = 0.3–1.2. United States. doi:10.3847/1538-4357/AA745B.
Tsai, A.-L., and Hwang, C.-Y., E-mail: altsai@astro.ncu.edu.tw, E-mail: hwangcy@astro.ncu.edu.tw. Sat . "Properties of Spectrally Defined Red QSOs at z = 0.3–1.2". United States. doi:10.3847/1538-4357/AA745B.
@article{osti_22663507,
title = {Properties of Spectrally Defined Red QSOs at z = 0.3–1.2},
author = {Tsai, A.-L. and Hwang, C.-Y., E-mail: altsai@astro.ncu.edu.tw, E-mail: hwangcy@astro.ncu.edu.tw},
abstractNote = {We investigated the properties of a sample of red Quasi-stellar Objects (QSOs) using optical, radio, and infrared data. These QSOs were selected from the Sloan Digital Sky Survey Data Release 7 quasar catalog. We only selected sources with sky coverage in the Very Large Array Faint Images of the Radio Sky at Twenty-centimeters survey, and searched for sources with Wide-field Infrared Survey Explorer counterparts. We defined the spectral color of the QSOs based on the flux ratio of the rest-frame 4000 to 3000 Å continuum emission to select red QSOs and typical QSOs. In accordance with this criterion, only QSOs with redshifts between 0.3 and 1.2 could be selected. We found that red QSOs have stronger infrared emission than typical QSOs. We noted that the number ratios of red QSOs to typical QSOs decrease with increasing redshifts, although the number of typical QSOs increase with redshifts. Furthermore, at high redshifts, the luminosity distributions of typical QSOs and red QSOs seem to have similar peaks; however, at low redshifts, the luminosities of red QSOs seem to be lower than those of typical QSOs. These findings suggest that there might be at least two types of red QSOs in our QSO samples.},
doi = {10.3847/1538-4357/AA745B},
journal = {Astrophysical Journal},
number = 1,
volume = 842,
place = {United States},
year = {Sat Jun 10 00:00:00 EDT 2017},
month = {Sat Jun 10 00:00:00 EDT 2017}
}
  • We present first results on the cooling properties derived from Chandra X-ray observations of 83 high-redshift (0.3 < z < 1.2) massive galaxy clusters selected by their Sunyaev-Zel'dovich signature in the South Pole Telescope data. We measure each cluster's central cooling time, central entropy, and mass deposition rate, and compare these properties to those for local cluster samples. We find no significant evolution from z {approx} 0 to z {approx} 1 in the distribution of these properties, suggesting that cooling in cluster cores is stable over long periods of time. We also find that the average cool core entropy profilemore » in the inner {approx}100 kpc has not changed dramatically since z {approx} 1, implying that feedback must be providing nearly constant energy injection to maintain the observed ''entropy floor'' at {approx}10 keV cm{sup 2}. While the cooling properties appear roughly constant over long periods of time, we observe strong evolution in the gas density profile, with the normalized central density ({rho}{sub g,0}/{rho}{sub crit}) increasing by an order of magnitude from z {approx} 1 to z {approx} 0. When using metrics defined by the inner surface brightness profile of clusters, we find an apparent lack of classical, cuspy, cool-core clusters at z > 0.75, consistent with earlier reports for clusters at z > 0.5 using similar definitions. Our measurements indicate that cool cores have been steadily growing over the 8 Gyr spanned by our sample, consistent with a constant, {approx}150 M{sub Sun} yr{sup -1} cooling flow that is unable to cool below entropies of 10 keV cm{sup 2} and, instead, accumulates in the cluster center. We estimate that cool cores began to assemble in these massive systems at z{sub cool}=1.0{sup +1.0}{sub -0.2}, which represents the first constraints on the onset of cooling in galaxy cluster cores. At high redshift (z {approx}> 0.75), galaxy clusters may be classified as ''cooling flows'' (low central entropy, cooling time) but not ''cool cores'' (cuspy surface brightness profile), meaning that care must be taken when classifying these high-z systems. We investigate several potential biases that could conspire to mimic this cool core evolution and are unable to find a bias that has a similar redshift dependence and a substantial amplitude.« less
  • The results of a survey of 32 QSOs for Mg II absorption at red wavelengths are presented, and the properties of the metal absorption systems are investigated. When interpreted in terms of ejection, the Mg II absorption systems are randomly distributed in velocity relative to the QSOs, although the systems may cluster on scales of a few thousand km/s. This is consistent with the absorption systems arising in intervening material not associated with the QSOs. The equivalent width distribution of the Mg II systems is well fitted by either an exponential or a power-law distribution, with the number density ofmore » the absorption systems increasing with decreasing rest equivalent width. There is marginally significant evidence for cosmological evolution of the number density of the Mg II absorbers, and no evidence for evolution of the Mg II equivalent width distribution with redshift. 42 references.« less
  • Samples of the La{sub 1{minus}x}Ca{sub x}MnO{sub y} system have been prepared under different atmospheres. Compositional analysis by electron probe microanalysis, atomic absorption, and thermogravimetric analysis reveals that the samples prepared in air show, in all cases, cationic and anionic vacancies which lead to a general composition (La{sub 1{minus}x}Ca{sub x}){sub z}Mn{sub z}O{sub y}, where z < 1 and y < 3. When these samples are oxidized, z remains constant, and the oxygen content increases up to y {approximately} 3, i.e., until the anionic perovskite sublattice is practically fully occupied. The precise knowledge of both the Mn{sup 3+}/Mn{sup 4+} ratio and themore » oxygen content allows one to assess its influence on the properties. The oxidation of these materials is accompanied by a strong decrease of their resistance; also, an increase in the magnetoresistance takes place, which is especially important at room temperature.« less
  • Magnetic properties, phase evolution, and microstructure of melt-spun (Sm{sub 1-x}Pr{sub x})Co{sub 7-y}Hf{sub y}C{sub z} ribbons have been investigated. For (Sm{sub 1-x}Pr{sub x})Co{sub 7-y}Hf{sub y} (x=0-1; y=0.1-0.3) ribbons, the magnetization increases, but coercivity decreases, with increasing Pr content. However, the phase constitution and microstructure have not been influenced by modifying Pr content x. The attractive magnetic properties of B{sub r}=6.5 kG, {sub i}H{sub c}=6.1 kOe, and (BH){sub max}=7.2 MG Oe could be obtained for (Sm{sub 0.8}Pr{sub 0.2})Co{sub 6.9}Hf{sub 0.1} ribbons. A slight addition of C in (Sm{sub 0.8}Pr{sub 0.2})Co{sub 6.9}Hf{sub 0.1}C{sub z} (z=0.06-0.14) ribbon not only refines the microstructure, but alsomore » induces nanoscale fcc-Co precipitation in the matrix, leading to the stronger exchange-coupling effect between magnetic grains and the enhancement of remanence and magnetic energy product. As a result, the improved magnetic properties of B{sub r}=7.1 kOe, {sub i}H{sub c}=8.5 kOe, and (BH){sub max}=11.2 MG Oe can be achieved for (Sm{sub 0.8}Pr{sub 0.2})Co{sub 6.9}Hf{sub 0.1}C{sub 0.12} ribbons.« less
  • We study the slope, intercept, and scatter of the color–magnitude and color–mass relations for a sample of 10 infrared red-sequence-selected clusters at z ∼ 1. The quiescent galaxies in these clusters formed the bulk of their stars above z ≳ 3 with an age spread Δt ≳ 1 Gyr. We compare UVJ color–color and spectroscopic-based galaxy selection techniques, and find a 15% difference in the galaxy populations classified as quiescent by these methods. We compare the color–magnitude relations from our red-sequence selected sample with X-ray- and photometric-redshift-selected cluster samples of similar mass and redshift. Within uncertainties, we are unable tomore » detect any difference in the ages and star formation histories of quiescent cluster members in clusters selected by different methods, suggesting that the dominant quenching mechanism is insensitive to cluster baryon partitioning at z ∼ 1.« less