skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Simulations of Fractal Star Cluster Formation. I. New Insights for Measuring Mass Segregation of Star Clusters with Substructure

Abstract

We compare the existent methods, including the minimum spanning tree based method and the local stellar density based method, in measuring mass segregation of star clusters. We find that the minimum spanning tree method reflects more the compactness, which represents the global spatial distribution of massive stars, while the local stellar density method reflects more the crowdedness, which provides the local gravitational potential information. It is suggested to measure the local and the global mass segregation simultaneously. We also develop a hybrid method that takes both aspects into account. This hybrid method balances the local and the global mass segregation in the sense that the predominant one is either caused by dynamical evolution or purely accidental, especially when such information is unknown a priori. In addition, we test our prescriptions with numerical models and show the impact of binaries in estimating the mass segregation value. As an application, we use these methods on the Orion Nebula Cluster (ONC) observations and the Taurus cluster. We find that the ONC is significantly mass segregated down to the 20th most massive stars. In contrast, the massive stars of the Taurus cluster are sparsely distributed in many different subclusters, showing a low degree ofmore » compactness. The massive stars of Taurus are also found to be distributed in the high-density region of the subclusters, showing significant mass segregation at subcluster scales. Meanwhile, we also apply these methods to discuss the possible mechanisms of the dynamical evolution of the simulated substructured star clusters.« less

Authors:
;  [1]; ;  [2]
  1. Institute of Astrophysics, Pontificia Universidad Católica, Av. Vicuña Mackenna 4860, Casilla 306, Santiago 22 (Chile)
  2. Center for Mathematical Science, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 4370074 (China)
Publication Date:
OSTI Identifier:
22663490
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 840; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; COMPARATIVE EVALUATIONS; DATA; DATA ANALYSIS; DENSITY; EVOLUTION; MASS; NEBULAE; SEGREGATION; SIMULATION; SPATIAL DISTRIBUTION; STAR CLUSTERS; STARS

Citation Formats

Yu, Jincheng, Puzia, Thomas H., Lin, Congping, and Zhang, Yiwei, E-mail: yujc.astro@gmail.com, E-mail: tpuzia@gmail.com, E-mail: congpinglin@gmail.com, E-mail: yiweizhang831129@gmail.com. Simulations of Fractal Star Cluster Formation. I. New Insights for Measuring Mass Segregation of Star Clusters with Substructure. United States: N. p., 2017. Web. doi:10.3847/1538-4357/AA6EA5.
Yu, Jincheng, Puzia, Thomas H., Lin, Congping, & Zhang, Yiwei, E-mail: yujc.astro@gmail.com, E-mail: tpuzia@gmail.com, E-mail: congpinglin@gmail.com, E-mail: yiweizhang831129@gmail.com. Simulations of Fractal Star Cluster Formation. I. New Insights for Measuring Mass Segregation of Star Clusters with Substructure. United States. doi:10.3847/1538-4357/AA6EA5.
Yu, Jincheng, Puzia, Thomas H., Lin, Congping, and Zhang, Yiwei, E-mail: yujc.astro@gmail.com, E-mail: tpuzia@gmail.com, E-mail: congpinglin@gmail.com, E-mail: yiweizhang831129@gmail.com. Wed . "Simulations of Fractal Star Cluster Formation. I. New Insights for Measuring Mass Segregation of Star Clusters with Substructure". United States. doi:10.3847/1538-4357/AA6EA5.
@article{osti_22663490,
title = {Simulations of Fractal Star Cluster Formation. I. New Insights for Measuring Mass Segregation of Star Clusters with Substructure},
author = {Yu, Jincheng and Puzia, Thomas H. and Lin, Congping and Zhang, Yiwei, E-mail: yujc.astro@gmail.com, E-mail: tpuzia@gmail.com, E-mail: congpinglin@gmail.com, E-mail: yiweizhang831129@gmail.com},
abstractNote = {We compare the existent methods, including the minimum spanning tree based method and the local stellar density based method, in measuring mass segregation of star clusters. We find that the minimum spanning tree method reflects more the compactness, which represents the global spatial distribution of massive stars, while the local stellar density method reflects more the crowdedness, which provides the local gravitational potential information. It is suggested to measure the local and the global mass segregation simultaneously. We also develop a hybrid method that takes both aspects into account. This hybrid method balances the local and the global mass segregation in the sense that the predominant one is either caused by dynamical evolution or purely accidental, especially when such information is unknown a priori. In addition, we test our prescriptions with numerical models and show the impact of binaries in estimating the mass segregation value. As an application, we use these methods on the Orion Nebula Cluster (ONC) observations and the Taurus cluster. We find that the ONC is significantly mass segregated down to the 20th most massive stars. In contrast, the massive stars of the Taurus cluster are sparsely distributed in many different subclusters, showing a low degree of compactness. The massive stars of Taurus are also found to be distributed in the high-density region of the subclusters, showing significant mass segregation at subcluster scales. Meanwhile, we also apply these methods to discuss the possible mechanisms of the dynamical evolution of the simulated substructured star clusters.},
doi = {10.3847/1538-4357/AA6EA5},
journal = {Astrophysical Journal},
number = 2,
volume = 840,
place = {United States},
year = {Wed May 10 00:00:00 EDT 2017},
month = {Wed May 10 00:00:00 EDT 2017}
}
  • We investigate the evolution of young star clusters using N-body simulations. We confirm that subvirial and fractal-structured clusters will dynamically mass segregate on a short timescale (within 0.5 Myr). We adopt a modified minimum-spanning-tree method to measure the degree of mass segregation, demonstrating that the stars escaping from a cluster's potential are important for the temporal dependence of mass segregation in the cluster. The form of the initial velocity distribution will also affect the degree of mass segregation. If it depends on radius, the outer parts of the cluster would expand without undergoing collapse. In velocity space, we find 'inversemore » mass segregation', which indicates that massive stars have higher velocity dispersions than their lower-mass counterparts.« less
  • We present a new implementation of star formation in cosmological simulations by considering star clusters as a unit of star formation. Cluster particles grow in mass over several million years at the rate determined by local gas properties, with high time resolution. The particle growth is terminated by its own energy and momentum feedback on the interstellar medium. We test this implementation for Milky Way-sized galaxies at high redshift by comparing the properties of model clusters with observations of young star clusters. We find that the cluster initial mass function is best described by a Schechter function rather than a single power law. In agreement with observations, at low masses the logarithmic slope ismore » $$\alpha \approx 1.8\mbox{–}2$$, while the cutoff at high mass scales with the star formation rate (SFR). A related trend is a positive correlation between the surface density of the SFR and fraction of stars contained in massive clusters. Both trends indicate that the formation of massive star clusters is preferred during bursts of star formation. These bursts are often associated with major-merger events. We also find that the median timescale for cluster formation ranges from 0.5 to 4 Myr and decreases systematically with increasing star formation efficiency. Local variations in the gas density and cluster accretion rate naturally lead to the scatter of the overall formation efficiency by an order of magnitude, even when the instantaneous efficiency is kept constant. As a result, comparison of the formation timescale with the observed age spread of young star clusters provides an additional important constraint on the modeling of star formation and feedback schemes.« less
  • One model for the origin of typical Galactic star clusters such as the Orion Nebula Cluster (ONC) is that they form via the rapid, efficient collapse of a bound gas clump within a larger, gravitationally unbound giant molecular cloud. However, simulations in support of this scenario have thus far not included the radiation feedback produced by the stars; radiative simulations have been limited to significantly smaller or lower-density regions. Here we use the ORION AMR code to conduct the first ever radiation-hydrodynamic simulations of the global collapse scenario for the formation of an ONC-like cluster. We show that radiative feedbackmore » has a dramatic effect on the evolution: once the first {approx}10%-20% of the gas mass is incorporated into stars, their radiative feedback raises the gas temperature high enough to suppress any further fragmentation. However, gas continues to accrete onto existing stars, and, as a result, the stellar mass distribution becomes increasingly top-heavy, eventually rendering it incompatible with the observed initial mass function (IMF). Systematic variation in the location of the IMF peak as star formation proceeds is incompatible with the observed invariance of the IMF between star clusters, unless some unknown mechanism synchronizes the IMFs in different clusters by ensuring that star formation is always truncated when the IMF peak reaches a particular value. We therefore conclude that the global collapse scenario, at least in its simplest form, is not compatible with the observed stellar IMF. We speculate that processes that slow down star formation, and thus reduce the accretion luminosity, may be able to resolve the problem.« less
  • A promising mechanism to form intermediate-mass black holes is the runaway merger in dense star clusters, where main-sequence stars collide and form a very massive star (VMS), which then collapses to a black hole (BH). In this paper, we study the effects of primordial mass segregation and the importance of the stellar initial mass function (IMF) on the runaway growth of VMSs using a dynamical Monte Carlo code for N-body systems with N as high as 10{sup 6} stars. Our code now includes an explicit treatment of all stellar collisions. We place special emphasis on the possibility of top-heavy IMFs,more » as observed in some very young massive clusters. We find that both primordial mass segregation and the shape of the IMF affect the rate of core collapse of star clusters and thus the time of the runaway. When we include primordial mass segregation, we generally see a decrease in core-collapse time (t{sub cc}). Although for smaller degrees of primordial mass segregation this decrease in t{sub cc} is mostly due to the change in the density profile of the cluster, for highly mass-segregated (primordial) clusters, it is the increase in the average mass in the core which reduces the central relaxation time decreasing t{sub cc}. The final mass of the VMS formed is always close to {approx}10{sup -3} of the total cluster mass, in agreement with previous studies and is reminiscent of the observed correlation between the central BH mass and the bulge mass of the galaxies. As the degree of primordial mass segregation is increased, the mass of the VMS increases at most by a factor of three. Flatter IMFs generally increase the average mass in the whole cluster, which increases t{sub cc}. For the range of IMFs investigated in this paper, this increase in t{sub cc} is to some degree balanced by stellar collisions, which accelerate core collapse. Thus, there is no significant change in t{sub cc} for the somewhat flatter global IMFs observed in very young massive clusters.« less
  • We analyze the relationship between maximum cluster mass M{sub max} and surface densities of total gas ({Sigma}{sub gas}), molecular gas ({Sigma}{sub H{sub 2}}), and star formation rate ({Sigma}{sub SFR}) in the flocculent galaxy M 33, using published gas data and a catalog of more than 600 young star clusters in its disk. By comparing the radial distributions of gas and most massive cluster masses, we find that M{sub max}{proportional_to}{Sigma}{sup 4.7{+-}0.4}{sub gas}, M{sub max}{proportional_to}{Sigma}{sup 1.3{+-}0.1}{sub H{sub 2}}, and M{sub max}{proportional_to}{Sigma}{sup 1.0{+-}0.1}{sub SFR}. We rule out that these correlations result from the size of the sample; hence, the change of the maximummore » cluster mass must be due to physical causes.« less