skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Comparison of Two Coronal Magnetic Field Models to Reconstruct a Sigmoidal Solar Active Region with Coronal Loops

Abstract

Magnetic field extrapolation is an important tool to study the three-dimensional (3D) solar coronal magnetic field, which is difficult to directly measure. Various analytic models and numerical codes exist, but their results often drastically differ. Thus, a critical comparison of the modeled magnetic field lines with the observed coronal loops is strongly required to establish the credibility of the model. Here we compare two different non-potential extrapolation codes, a nonlinear force-free field code (CESE–MHD–NLFFF) and a non-force-free field (NFFF) code, in modeling a solar active region (AR) that has a sigmoidal configuration just before a major flare erupted from the region. A 2D coronal-loop tracing and fitting method is employed to study the 3D misalignment angles between the extrapolated magnetic field lines and the EUV loops as imaged by SDO /AIA. It is found that the CESE–MHD–NLFFF code with preprocessed magnetogram performs the best, outputting a field that matches the coronal loops in the AR core imaged in AIA 94 Å with a misalignment angle of ∼10°. This suggests that the CESE–MHD–NLFFF code, even without using the information of the coronal loops in constraining the magnetic field, performs as good as some coronal-loop forward-fitting models. For the loops as imagedmore » by AIA 171 Å in the outskirts of the AR, all the codes including the potential field give comparable results of the mean misalignment angle (∼30°). Thus, further improvement of the codes is needed for a better reconstruction of the long loops enveloping the core region.« less

Authors:
;  [1];  [2]; ; ;  [3];  [4]
  1. Key Laboratory of Computational Geodynamics, University of Chinese Academy of Sciences, Beijing 100049 (China)
  2. Institute of Space Science and Applied Technology, Harbin Institute of Technology, Shenzhen, 518055 (China)
  3. Center for Space Plasma and Aeronomic Research, The University of Alabama in Huntsville, Huntsville, AL 35899 (United States)
  4. School of Space and Environment, Beihang University, Beijing 100191 (China)
Publication Date:
OSTI Identifier:
22663470
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 842; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; COMPARATIVE EVALUATIONS; COMPUTERIZED SIMULATION; CONFIGURATION; EXTRAPOLATION; MAGNETIC FIELDS; MAGNETOHYDRODYNAMICS; NONLINEAR PROBLEMS; SOLAR CORONA; SUN; THREE-DIMENSIONAL CALCULATIONS

Citation Formats

Duan, Aiying, Zhang, Huai, Jiang, Chaowei, Hu, Qiang, Gary, G. Allen, Wu, S. T., and Cao, Jinbin, E-mail: duanaiying@ucas.ac.cn, E-mail: hzhang@ucas.ac.cn, E-mail: chaowei@hit.edu.cn. Comparison of Two Coronal Magnetic Field Models to Reconstruct a Sigmoidal Solar Active Region with Coronal Loops. United States: N. p., 2017. Web. doi:10.3847/1538-4357/AA76E1.
Duan, Aiying, Zhang, Huai, Jiang, Chaowei, Hu, Qiang, Gary, G. Allen, Wu, S. T., & Cao, Jinbin, E-mail: duanaiying@ucas.ac.cn, E-mail: hzhang@ucas.ac.cn, E-mail: chaowei@hit.edu.cn. Comparison of Two Coronal Magnetic Field Models to Reconstruct a Sigmoidal Solar Active Region with Coronal Loops. United States. doi:10.3847/1538-4357/AA76E1.
Duan, Aiying, Zhang, Huai, Jiang, Chaowei, Hu, Qiang, Gary, G. Allen, Wu, S. T., and Cao, Jinbin, E-mail: duanaiying@ucas.ac.cn, E-mail: hzhang@ucas.ac.cn, E-mail: chaowei@hit.edu.cn. Tue . "Comparison of Two Coronal Magnetic Field Models to Reconstruct a Sigmoidal Solar Active Region with Coronal Loops". United States. doi:10.3847/1538-4357/AA76E1.
@article{osti_22663470,
title = {Comparison of Two Coronal Magnetic Field Models to Reconstruct a Sigmoidal Solar Active Region with Coronal Loops},
author = {Duan, Aiying and Zhang, Huai and Jiang, Chaowei and Hu, Qiang and Gary, G. Allen and Wu, S. T. and Cao, Jinbin, E-mail: duanaiying@ucas.ac.cn, E-mail: hzhang@ucas.ac.cn, E-mail: chaowei@hit.edu.cn},
abstractNote = {Magnetic field extrapolation is an important tool to study the three-dimensional (3D) solar coronal magnetic field, which is difficult to directly measure. Various analytic models and numerical codes exist, but their results often drastically differ. Thus, a critical comparison of the modeled magnetic field lines with the observed coronal loops is strongly required to establish the credibility of the model. Here we compare two different non-potential extrapolation codes, a nonlinear force-free field code (CESE–MHD–NLFFF) and a non-force-free field (NFFF) code, in modeling a solar active region (AR) that has a sigmoidal configuration just before a major flare erupted from the region. A 2D coronal-loop tracing and fitting method is employed to study the 3D misalignment angles between the extrapolated magnetic field lines and the EUV loops as imaged by SDO /AIA. It is found that the CESE–MHD–NLFFF code with preprocessed magnetogram performs the best, outputting a field that matches the coronal loops in the AR core imaged in AIA 94 Å with a misalignment angle of ∼10°. This suggests that the CESE–MHD–NLFFF code, even without using the information of the coronal loops in constraining the magnetic field, performs as good as some coronal-loop forward-fitting models. For the loops as imaged by AIA 171 Å in the outskirts of the AR, all the codes including the potential field give comparable results of the mean misalignment angle (∼30°). Thus, further improvement of the codes is needed for a better reconstruction of the long loops enveloping the core region.},
doi = {10.3847/1538-4357/AA76E1},
journal = {Astrophysical Journal},
number = 2,
volume = 842,
place = {United States},
year = {Tue Jun 20 00:00:00 EDT 2017},
month = {Tue Jun 20 00:00:00 EDT 2017}
}
  • The shapes of solar coronal loops are sensitive to the presence of electrical currents that are the carriers of the non-potential energy available for impulsive activity. We use this information in a new method for modeling the coronal magnetic field of active region (AR) 11158 as a nonlinear force-free field (NLFFF). The observations used are coronal images around the time of major flare activity on 2011 February 15, together with the surface line-of-sight magnetic field measurements. The data are from the Helioseismic and Magnetic Imager and Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. The model fields are constrainedmore » to approximate the coronal loop configurations as closely as possible, while also being subject to the force-free constraints. The method does not use transverse photospheric magnetic field components as input and is thereby distinct from methods for modeling NLFFFs based on photospheric vector magnetograms. We validate the method using observations of AR 11158 at a time well before major flaring and subsequently review the field evolution just prior to and following an X2.2 flare and associated eruption. The models indicate that the energy released during the instability is about 1 × 10{sup 32} erg, consistent with what is needed to power such a large eruptive flare. Immediately prior to the eruption, the model field contains a compact sigmoid bundle of twisted flux that is not present in the post-eruption models, which is consistent with the observations. The core of that model structure is twisted by ≈0.9 full turns about its axis.« less
  • In this paper we show that when accurate nonlinear force-free field (NLFFF) models are analyzed together with high-resolution magnetohydrodynamic (MHD) simulations, we can determine the physical causes for the coronal mass ejection (CME) eruption on 2007 February 12. We compare the geometrical and topological properties of the three-dimensional magnetic fields given by both methods in their pre-eruptive phases. We arrive at a consistent picture for the evolution and eruption of the sigmoid. Both the MHD simulation and the observed magnetic field evolution show that flux cancellation plays an important role in building the flux rope. We compute the squashing factor,more » Q, in different horizontal maps in the domains. The main shape of the quasi-separatrix layers (QSLs) is very similar between the NLFFF and MHD models. The main QSLs lie on the edge of the flux rope. While the QSLs in the NLFFF model are more complex due to the intrinsic large complexity in the field, the QSLs in the MHD model are smooth and possess lower maximum value of Q. In addition, we demonstrate the existence of hyperbolic flux tubes (HFTs) in both models in vertical cross sections of Q. The main HFT, located under the twisted flux rope in both models, is identified as the most probable site for reconnection. We also show that there are electric current concentrations coinciding with the main QSLs. Finally, we perform torus instability analysis and show that a combination between reconnection at the HFT and the resulting expansion of the flux rope into the torus instability domain is the cause of the CME in both models.« less
  • In this paper, we address the formation of a magnetic flux rope (MFR) that erupted on 2012 July 12 and caused a strong geomagnetic storm event on July 15. Through analyzing the long-term evolution of the associated active region observed by the Atmospheric Imaging Assembly and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, it is found that the twisted field of an MFR, indicated by a continuous S-shaped sigmoid, is built up from two groups of sheared arcades near the main polarity inversion line a half day before the eruption. The temperature within the twisted fieldmore » and sheared arcades is higher than that of the ambient volume, suggesting that magnetic reconnection most likely works there. The driver behind the reconnection is attributed to shearing and converging motions at magnetic footpoints with velocities in the range of 0.1-0.6 km s{sup –1}. The rotation of the preceding sunspot also contributes to the MFR buildup. Extrapolated three-dimensional non-linear force-free field structures further reveal the locations of the reconnection to be in a bald-patch region and in a hyperbolic flux tube. About 2 hr before the eruption, indications of a second MFR in the form of an S-shaped hot channel are seen. It lies above the original MFR that continuously exists and includes a filament. The whole structure thus makes up a stable double-decker MFR system for hours prior to the eruption. Eventually, after entering the domain of instability, the high-lying MFR impulsively erupts to generate a fast coronal mass ejection and X-class flare; while the low-lying MFR remains behind and continuously maintains the sigmoidicity of the active region.« less
  • We present the analysis of a decaying active region observed by the EUV Imaging Spectrometer on Hinode during 2009 December 7–11. We investigated the temporal evolution of its structure exhibited by plasma at temperatures from 300,000 to 2.8 million degrees, and derived the electron density, differential emission measure, effective electron temperature, and elemental abundance ratios of Si/S and Fe/S (as a measure of the First Ionization Potential (FIP) Effect). We compared these coronal properties to the temporal evolution of the photospheric magnetic field strength obtained from the Solar and Heliospheric Observatory Michelson Doppler Imager magnetograms. We find that, while thesemore » coronal properties all decreased with time during this decay phase, the largest change was at plasma above 1.5 million degrees. The photospheric magnetic field strength also decreased with time but mainly for field strengths lower than about 70 Gauss. The effective electron temperature and the FIP bias seem to reach a “basal” state (at 1.5 × 10{sup 6} K and 1.5, respectively) into the quiet Sun when the mean photospheric magnetic field (excluding all areas <10 G) weakened to below 35 G, while the electron density continued to decrease with the weakening field. These physical properties are all positively correlated with each other and the correlation is the strongest in the high-temperature plasma. Such correlation properties should be considered in the quest for our understanding of how the corona is heated. The variations in the elemental abundance should especially be considered together with the electron temperature and density.« less
  • We studied the XUV observations of the active region McMath 12378 obtained with the NRL XUV spectroheliograph on Skylab. The XUV emission of the active region consists predominantly of loops which can be roughly divided into three distinctive structural groups according to their temperature of formation. The first group, observed in coronal ions such as Fe XV and Fe XVI, are mainly small and compact loops, which span directly across the photospheric magnetic neutral lines separating the two strong magnetic field regions with opposite polarity. The second group, with temperatures of 5 x 10/sup 5/ to 1 x 10/sup 6/more » K, is typified by large Ne VII and Mg IX loops, which connect preferably the bipolar magnetic regions outside of the neutral line. The Ne VII loops are sharply defined while the Mg IX loops are more diffuse. The third group of emission structures is the chromospheric ribbons in He II, which are situated on each side of the magnetic neutral line. These He II ribbons are identified as the loci of the footpoints of the coronal Fe XV--XVI loops.« less