skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Is There a Disk of Satellites around the Milky Way?

Abstract

The “disk of satellites” (DoS) around the Milky Way is a highly debated topic with conflicting interpretations of observations and their theoretical models. We perform a comprehensive analysis of all of the dwarfs detected in the Milky Way and find that the DoS structure depends strongly on the plane identification method and the sample size. In particular, we demonstrate that a small sample size can artificially produce a highly anisotropic spatial distribution and a strong clustering of the angular momentum of the satellites. Moreover, we calculate the evolution of the 11 classical satellites with proper motion measurements and find that the thin DoS in which they currently reside is transient. Furthermore, we analyze two cosmological simulations using the same initial conditions of a Milky-Way-sized galaxy, an N -body run with dark matter only, and a hydrodynamic one with both baryonic and dark matter, and find that the hydrodynamic simulation produces a more anisotropic distribution of satellites than the N -body one. Our results suggest that an anisotropic distribution of satellites in galaxies can originate from baryonic processes in the hierarchical structure formation model, but the claimed highly flattened, coherently rotating DoS of the Milky Way may be biased by themore » small-number selection effect. These findings may help resolve the contradictory claims of DoS in galaxies and the discrepancy among numerical simulations.« less

Authors:
; ;  [1];  [2]
  1. Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)
  2. Department of Physics, Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)
Publication Date:
OSTI Identifier:
22663434
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 843; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ANGULAR MOMENTUM; ANISOTROPY; BARYONS; COMPUTERIZED SIMULATION; GALACTIC EVOLUTION; HYDRODYNAMICS; MILKY WAY; NONLUMINOUS MATTER; PROPER MOTION; SATELLITES; SPATIAL DISTRIBUTION

Citation Formats

Maji, Moupiya, Zhu, Qirong, Li, Yuexing, and Marinacci, Federico, E-mail: moupiya@psu.edu. Is There a Disk of Satellites around the Milky Way?. United States: N. p., 2017. Web. doi:10.3847/1538-4357/AA72F5.
Maji, Moupiya, Zhu, Qirong, Li, Yuexing, & Marinacci, Federico, E-mail: moupiya@psu.edu. Is There a Disk of Satellites around the Milky Way?. United States. doi:10.3847/1538-4357/AA72F5.
Maji, Moupiya, Zhu, Qirong, Li, Yuexing, and Marinacci, Federico, E-mail: moupiya@psu.edu. Sat . "Is There a Disk of Satellites around the Milky Way?". United States. doi:10.3847/1538-4357/AA72F5.
@article{osti_22663434,
title = {Is There a Disk of Satellites around the Milky Way?},
author = {Maji, Moupiya and Zhu, Qirong and Li, Yuexing and Marinacci, Federico, E-mail: moupiya@psu.edu},
abstractNote = {The “disk of satellites” (DoS) around the Milky Way is a highly debated topic with conflicting interpretations of observations and their theoretical models. We perform a comprehensive analysis of all of the dwarfs detected in the Milky Way and find that the DoS structure depends strongly on the plane identification method and the sample size. In particular, we demonstrate that a small sample size can artificially produce a highly anisotropic spatial distribution and a strong clustering of the angular momentum of the satellites. Moreover, we calculate the evolution of the 11 classical satellites with proper motion measurements and find that the thin DoS in which they currently reside is transient. Furthermore, we analyze two cosmological simulations using the same initial conditions of a Milky-Way-sized galaxy, an N -body run with dark matter only, and a hydrodynamic one with both baryonic and dark matter, and find that the hydrodynamic simulation produces a more anisotropic distribution of satellites than the N -body one. Our results suggest that an anisotropic distribution of satellites in galaxies can originate from baryonic processes in the hierarchical structure formation model, but the claimed highly flattened, coherently rotating DoS of the Milky Way may be biased by the small-number selection effect. These findings may help resolve the contradictory claims of DoS in galaxies and the discrepancy among numerical simulations.},
doi = {10.3847/1538-4357/AA72F5},
journal = {Astrophysical Journal},
number = 1,
volume = 843,
place = {United States},
year = {Sat Jul 01 00:00:00 EDT 2017},
month = {Sat Jul 01 00:00:00 EDT 2017}
}
  • As part of the Dwarf galaxies Abundances and Radial-velocities Team (DART) Programme, we have measured the metallicities of a large sample of stars in four nearby dwarf spheroidal galaxies (dSph): Sculptor, Sextans, Fornax and Carina. The low mean metal abundances and the presence of very old stellar populations in these galaxies have supported the view that they are fossils from the early Universe. However, contrary to naive expectations, we find a significant lack of stars with metallicities below [Fe/H] {approx} -3 dex in all four systems. This suggests that the gas that made up the stars in these systems hadmore » been uniformly enriched prior to their formation. Furthermore, the metal-poor tail of the dSph metallicity distribution is significantly different from that of the Galactic halo. These findings show that the progenitors of nearby dSph appear to have been fundamentally different from the building blocks of the Milky Way, even at the earliest epochs.« less
  • Satellite galaxies of the Milky Way are among the most promising targets for dark matter searches in gamma rays. We present a search for dark matter consisting of weakly interacting massive particles, applying a joint likelihood analysis to 10 satellite galaxies with 24 months of data of the Fermi Large Area Telescope. No dark matter signal is detected. Including the uncertainty in the dark matter distribution, robust upper limits are placed on dark matter annihilation cross sections. The 95% confidence level upper limits range from about 10{sup -26} cm{sup 3} s{sup -1} at 5 GeV to about 5 x 10{supmore » -23} cm{sup 3} s{sup -1} at 1 TeV, depending on the dark matter annihilation final state. For the first time, using gamma rays, we are able to rule out models with the most generic cross section ({approx}3 x 10{sup -26} cm{sup 3} s{sup -1} for a purely s-wave cross section), without assuming additional boost factors.« less
  • The dwarf satellite galaxies in the Local Group are generally considered to be hosted in dark matter subhalos that survived the disruptive processes during infall onto their host halos. It has recently been argued that if the majority of satellites entered the Milky Way (MW) halo in a group rather than individually, this could explain the spatial and dynamical peculiarities of its satellite distribution. Such groups were identified as dwarf galaxy associations that are found in the nearby universe. In this paper, we address the question whether galaxies in such associations can be the progenitors of the MW satellite galaxies.more » We find that the dwarf associations are much more extended than would be required to explain the disklike distribution of the MW and Andromeda satellite galaxies. We further identify a possible minor filamentary structure, perpendicular to the supergalactic plane, in which the dwarf associations are located, that might be related to the direction of infall of a progenitor galaxy of the MW satellites, if they are of tidal origin.« less
  • We report the discovery of two new Milky Way satellites in the neighboring constellations of Pisces and Pegasus identified in data from the Sloan Digital Sky Survey. Pisces II, an ultra-faint dwarf galaxy lies at the distance of {approx}180 kpc, some 15 deg. away from the recently detected Pisces I. Segue 3, an ultra-faint star cluster lies at the distance of 16 kpc. We use deep follow-up imaging obtained with the 4-m Mayall Telescope at Kitt Peak National Observatory to derive their structural parameters. Pisces II has a half-light radius of {approx}60 pc, while Segue 3 is 20 times smallermore » at only 3 pc.« less