skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An Improved Analytical Model of the Local Interstellar Magnetic Field: The Extension to Compressibility

Abstract

A previously published analytical magnetohydrodynamic model for the local interstellar magnetic field in the vicinity of the heliopause (Röken et al. 2015) is extended from incompressible to compressible, yet predominantly subsonic flow, considering both isothermal and adiabatic equations of state. Exact expressions and suitable approximations for the density and the flow velocity are derived and discussed. In addition to the stationary induction equation, these expressions also satisfy the momentum balance equation along stream lines. The practical usefulness of the corresponding, still exact, analytical magnetic field solution is assessed by comparing it quantitatively to results from a fully self-consistent magnetohydrodynamic simulation of the interstellar magnetic field draping around the heliopause.

Authors:
;  [1];  [2]
  1. Ruhr-Universität Bochum, Fakultät für Physik und Astronomie, Institut für Theoretische Physik IV, Bochum (Germany)
  2. Universität Regensburg, Fakultät für Mathematik, Regensburg (Germany)
Publication Date:
OSTI Identifier:
22661227
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 838; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; APPROXIMATIONS; COMPARATIVE EVALUATIONS; COMPRESSIBILITY; DENSITY; EQUATIONS OF STATE; HELIOSPHERE; INTERSTELLAR MAGNETIC FIELDS; MAGNETOHYDRODYNAMICS; SIMULATION; STREAMS; SUBSONIC FLOW; SUN; VELOCITY

Citation Formats

Kleimann, Jens, Fichtner, Horst, and Röken, Christian, E-mail: jk@tp4.rub.de, E-mail: hf@tp4.rub.de, E-mail: christian.roeken@mathematik.uni-regensburg.de. An Improved Analytical Model of the Local Interstellar Magnetic Field: The Extension to Compressibility. United States: N. p., 2017. Web. doi:10.3847/1538-4357/AA5F15.
Kleimann, Jens, Fichtner, Horst, & Röken, Christian, E-mail: jk@tp4.rub.de, E-mail: hf@tp4.rub.de, E-mail: christian.roeken@mathematik.uni-regensburg.de. An Improved Analytical Model of the Local Interstellar Magnetic Field: The Extension to Compressibility. United States. doi:10.3847/1538-4357/AA5F15.
Kleimann, Jens, Fichtner, Horst, and Röken, Christian, E-mail: jk@tp4.rub.de, E-mail: hf@tp4.rub.de, E-mail: christian.roeken@mathematik.uni-regensburg.de. Mon . "An Improved Analytical Model of the Local Interstellar Magnetic Field: The Extension to Compressibility". United States. doi:10.3847/1538-4357/AA5F15.
@article{osti_22661227,
title = {An Improved Analytical Model of the Local Interstellar Magnetic Field: The Extension to Compressibility},
author = {Kleimann, Jens and Fichtner, Horst and Röken, Christian, E-mail: jk@tp4.rub.de, E-mail: hf@tp4.rub.de, E-mail: christian.roeken@mathematik.uni-regensburg.de},
abstractNote = {A previously published analytical magnetohydrodynamic model for the local interstellar magnetic field in the vicinity of the heliopause (Röken et al. 2015) is extended from incompressible to compressible, yet predominantly subsonic flow, considering both isothermal and adiabatic equations of state. Exact expressions and suitable approximations for the density and the flow velocity are derived and discussed. In addition to the stationary induction equation, these expressions also satisfy the momentum balance equation along stream lines. The practical usefulness of the corresponding, still exact, analytical magnetic field solution is assessed by comparing it quantitatively to results from a fully self-consistent magnetohydrodynamic simulation of the interstellar magnetic field draping around the heliopause.},
doi = {10.3847/1538-4357/AA5F15},
journal = {Astrophysical Journal},
number = 1,
volume = 838,
place = {United States},
year = {Mon Mar 20 00:00:00 EDT 2017},
month = {Mon Mar 20 00:00:00 EDT 2017}
}
  • The solar wind emanating from the Sun interacts with the local interstellar medium (LISM), forming the heliosphere. Hydrogen energetic neutral atoms (ENAs) produced by the solar-interstellar interaction carry important information about plasma properties from the boundaries of the heliosphere, and are currently being measured by NASA's Interstellar Boundary Explorer (IBEX). IBEX observations show the existence of a “ribbon” of intense ENA emission projecting a circle on the celestial sphere that is centered near the local interstellar magnetic field (ISMF) vector. Here we show that the source of the IBEX ribbon as a function of ENA energy outside the heliosphere, uniquelymore » coupled to the draping of the ISMF around the heliopause, can be used to precisely determine the magnitude (2.93 ± 0.08 μG) and direction (227.°28 ± 0.°69, 34.°62 ± 0.°45 in ecliptic longitude and latitude) of the pristine ISMF far (∼1000 AU) from the Sun. We find that the ISMF vector is offset from the ribbon center by ∼8.°3 toward the direction of motion of the heliosphere through the LISM, and their vectors form a plane that is consistent with the direction of deflected interstellar neutral hydrogen, thought to be controlled by the ISMF. Our results yield draped ISMF properties close to that observed by Voyager 1, the only spacecraft to directly measure the ISMF close to the heliosphere, and give predictions of the pristine ISMF that Voyager 1 has yet to sample.« less
  • The solar wind emanating from the Sun interacts with the local interstellar medium (LISM), forming the heliosphere. Hydrogen energetic neutral atoms (ENAs) produced by the solar-interstellar interaction carry important information about plasma properties from the boundaries of the heliosphere, and are currently being measured by NASA's Interstellar Boundary Explorer (IBEX). IBEX observations show the existence of a “ribbon” of intense ENA emission projecting a circle on the celestial sphere that is centered near the local interstellar magnetic field (ISMF) vector. Here we show that the source of the IBEX ribbon as a function of ENA energy outside the heliosphere, uniquelymore » coupled to the draping of the ISMF around the heliopause, can be used to precisely determine the magnitude (2.93 ± 0.08 μG) and direction (227.°28 ± 0.°69, 34.°62 ± 0.°45 in ecliptic longitude and latitude) of the pristine ISMF far (~1000 AU) from the Sun. We find that the ISMF vector is offset from the ribbon center by ~8.°3 toward the direction of motion of the heliosphere through the LISM, and their vectors form a plane that is consistent with the direction of deflected interstellar neutral hydrogen, thought to be controlled by the ISMF. Lastly, our results yield draped ISMF properties close to that observed by Voyager 1, the only spacecraft to directly measure the ISMF close to the heliosphere, and give predictions of the pristine ISMF that Voyager 1 has yet to sample.« less
  • An analytical representation of the interstellar magnetic field in the vicinity of the heliosphere is derived. The three-dimensional field structure close to the heliopause is calculated as a solution of the induction equation under the assumption that it is frozen into a prescribed plasma flow resembling the characteristic interaction of the solar wind with the local interstellar medium. The usefulness of this analytical solution as an approximation to self-consistent magnetic field configurations obtained numerically from the full MHD equations is illustrated by quantitative comparisons.
  • The interaction of the solar wind with the very local interstellar medium (VLISM) forms the boundaries of the heliosphere. A strong asymmetry of the heliosphere was found both directly by the Voyager probes and indirectly from measurements of the deflection of neutral hydrogen. The most likely source of this asymmetry is from the interstellar magnetic field, the properties of which are highly unconstrained. Energetic neutral atom (ENA) images will provide an additional method to view the heliosphere and infer the interstellar magnetic field. This paper investigates the imprint of the interstellar magnetic field on simulated energetic neutral atom all-sky maps.more » We show that a significant source of 0.5-1 keV ENAs may originate from the outside of the heliopause, if a strong suprathermal population exists in the VLISM. In simulations, a strong outer heliosheath ENA feature appears near the nose of the heliosphere. A weaker, complementary feature is also present consisting entirely of inner heliosheath ENAs. From this feature the direction of the interstellar magnetic field can be easily inferred.« less
  • We show that the shape of the IBEX Ribbon can be reproduced assuming energetic neutral atoms originate in regions beyond the heliopause where the interstellar magnetic field is the strongest and perpendicular to radial directions from the Sun. The best fit to the observed ribbon was obtained for the local interstellar magnetic field B{sub {infinity}} = 3.0 {+-} 1.0 {mu}G pointing from ecliptic/galactic coordinates ({lambda}, {beta})/(l, b) = (225{sup 0} {+-} 5{sup 0}, 35{sup 0} {+-} 5{sup 0})/(27{sup 0} {+-} 5{sup 0}, 51{sup 0} {+-} 5{sup 0}) close to the apparent ribbon center ({lambda}, {beta})/(l, b) = (221{sup 0}, 39{supmore » 0})/(33{sup 0}, 55{sup 0}). The geometrical considerations presented below should prove useful in identifying the mechanism of ribbon formation.« less