skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Magnetic Fields in the Massive Dense Cores of the DR21 Filament: Weakly Magnetized Cores in a Strongly Magnetized Filament

Abstract

We present Submillimeter Array 880 μ m dust polarization observations of six massive dense cores in the DR21 filament. The dust polarization shows complex magnetic field structures in the massive dense cores with sizes of 0.1 pc, in contrast to the ordered magnetic fields of the parsec-scale filament. The major axes of the massive dense cores appear to be aligned either parallel or perpendicular to the magnetic fields of the filament, indicating that the parsec-scale magnetic fields play an important role in the formation of the massive dense cores. However, the correlation between the major axes of the cores and the magnetic fields of the cores is less significant, suggesting that during the core formation, the magnetic fields below 0.1 pc scales become less important than the magnetic fields above 0.1 pc scales in supporting a core against gravity. Our analysis of the angular dispersion functions of the observed polarization segments yields a plane-of-sky magnetic field strength of 0.4–1.7 mG for the massive dense cores. We estimate the kinematic, magnetic, and gravitational virial parameters of the filament and the cores. The virial parameters show that the gravitational energy in the filament dominates magnetic and kinematic energies, while the kinematic energymore » dominates in the cores. Our work suggests that although magnetic fields may play an important role in a collapsing filament, the kinematics arising from gravitational collapse must become more important than magnetic fields during the evolution from filaments to massive dense cores.« less

Authors:
;  [1]; ;  [2];  [3];  [4]
  1. Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China)
  2. Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138 (United States)
  3. School of Astronomy and Space Science, Nanjing University, 163 Xianlin Avenue, Nanjing 210023 (China)
  4. European Southern Observatory (ESO), Karl-Schwarzschild-Str. 2, D-85748 Garching (Germany)
Publication Date:
OSTI Identifier:
22661199
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 838; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; CLOUDS; CORRELATIONS; DISPERSIONS; DUSTS; EVOLUTION; GRAVITATIONAL COLLAPSE; MAGNETIC FIELDS; POLARIZATION; STARS

Citation Formats

Ching, Tao-Chung, Lai, Shih-Ping, Zhang, Qizhou, Girart, Josep M., Qiu, Keping, and Liu, Hauyu B., E-mail: chingtaochung@gmail.com. Magnetic Fields in the Massive Dense Cores of the DR21 Filament: Weakly Magnetized Cores in a Strongly Magnetized Filament. United States: N. p., 2017. Web. doi:10.3847/1538-4357/AA65CC.
Ching, Tao-Chung, Lai, Shih-Ping, Zhang, Qizhou, Girart, Josep M., Qiu, Keping, & Liu, Hauyu B., E-mail: chingtaochung@gmail.com. Magnetic Fields in the Massive Dense Cores of the DR21 Filament: Weakly Magnetized Cores in a Strongly Magnetized Filament. United States. doi:10.3847/1538-4357/AA65CC.
Ching, Tao-Chung, Lai, Shih-Ping, Zhang, Qizhou, Girart, Josep M., Qiu, Keping, and Liu, Hauyu B., E-mail: chingtaochung@gmail.com. Sat . "Magnetic Fields in the Massive Dense Cores of the DR21 Filament: Weakly Magnetized Cores in a Strongly Magnetized Filament". United States. doi:10.3847/1538-4357/AA65CC.
@article{osti_22661199,
title = {Magnetic Fields in the Massive Dense Cores of the DR21 Filament: Weakly Magnetized Cores in a Strongly Magnetized Filament},
author = {Ching, Tao-Chung and Lai, Shih-Ping and Zhang, Qizhou and Girart, Josep M. and Qiu, Keping and Liu, Hauyu B., E-mail: chingtaochung@gmail.com},
abstractNote = {We present Submillimeter Array 880 μ m dust polarization observations of six massive dense cores in the DR21 filament. The dust polarization shows complex magnetic field structures in the massive dense cores with sizes of 0.1 pc, in contrast to the ordered magnetic fields of the parsec-scale filament. The major axes of the massive dense cores appear to be aligned either parallel or perpendicular to the magnetic fields of the filament, indicating that the parsec-scale magnetic fields play an important role in the formation of the massive dense cores. However, the correlation between the major axes of the cores and the magnetic fields of the cores is less significant, suggesting that during the core formation, the magnetic fields below 0.1 pc scales become less important than the magnetic fields above 0.1 pc scales in supporting a core against gravity. Our analysis of the angular dispersion functions of the observed polarization segments yields a plane-of-sky magnetic field strength of 0.4–1.7 mG for the massive dense cores. We estimate the kinematic, magnetic, and gravitational virial parameters of the filament and the cores. The virial parameters show that the gravitational energy in the filament dominates magnetic and kinematic energies, while the kinematic energy dominates in the cores. Our work suggests that although magnetic fields may play an important role in a collapsing filament, the kinematics arising from gravitational collapse must become more important than magnetic fields during the evolution from filaments to massive dense cores.},
doi = {10.3847/1538-4357/AA65CC},
journal = {Astrophysical Journal},
number = 2,
volume = 838,
place = {United States},
year = {Sat Apr 01 00:00:00 EDT 2017},
month = {Sat Apr 01 00:00:00 EDT 2017}
}
  • The formation of massive stars is a highly complex process in which it is unclear whether the star-forming gas is in global gravitational collapse or an equilibrium state supported by turbulence and/or magnetic fields. By studying one of the most massive and dense star-forming regions in the Galaxy at a distance of less than 3 kpc, i.e. the filament containing the well-known sources DR21 and DR21(OH), we attempt to obtain observational evidence to help us to discriminate between these two views. We use molecular line data from our {sup 13}CO 1 {yields} 0, CS 2 {yields} 1, and N{sub 2}H{supmore » +} 1 {yields} 0 survey of the Cygnus X region obtained with the FCRAO and CO, CS, HCO{sup +}, N{sub 2}H{sup +}, and H{sub 2}CO data obtained with the IRAM 30m telescope. We observe a complex velocity field and velocity dispersion in the DR21 filament in which regions of the highest column-density, i.e., dense cores, have a lower velocity dispersion than the surrounding gas and velocity gradients that are not (only) due to rotation. Infall signatures in optically thick line profiles of HCO{sup +} and {sup 12}CO are observed along and across the whole DR21 filament. By modelling the observed spectra, we obtain a typical infall speed of {approx}0.6 km s{sup -1} and mass accretion rates of the order of a few 10{sup -3} M{sub {circle_dot}} yr{sup -1} for the two main clumps constituting the filament. These massive clumps (4900 and 3300 M{sub {circle_dot}} at densities of around 10{sup 5} cm{sup -3} within 1 pc diameter) are both gravitationally contracting. The more massive of the clumps, DR21(OH), is connected to a sub-filament, apparently 'falling' onto the clump. This filament runs parallel to the magnetic field. Conclusions. All observed kinematic features in the DR21 filament (velocity field, velocity dispersion, and infall), its filamentary morphology, and the existence of (a) sub-filament(s) can be explained if the DR21 filament was formed by the convergence of flows on large scales and is now in a state of global gravitational collapse. Whether this convergence of flows originated from self-gravity on larger scales or from other processes cannot be determined by the present study. The observed velocity field and velocity dispersion are consistent with results from (magneto)-hydrodynamic simulations where the cores lie at the stagnation points of convergent turbulent flows.« less
  • We report the results of radiation-magnetohydrodynamics calculations in the context of high-mass star formation, using for the first time a self-consistent model for photon emission (i.e., via thermal emission and in radiative shocks) and with the high resolution necessary to properly resolve magnetic braking effects and radiative shocks on scales <100 AU. We investigate the combined effects of magnetic field, turbulence, and radiative transfer on the early phases of the collapse and the fragmentation of massive dense cores. We identify a new mechanism that inhibits initial fragmentation of massive dense cores where magnetic field and radiative transfer interplay. We showmore » that this interplay becomes stronger as the magnetic field strength increases. Magnetic braking is transporting angular momentum outward and is lowering the rotational support and is thus increasing the infall velocity. This enhances the radiative feedback owing to the accretion shock on the first core. We speculate that highly magnetized massive dense cores are good candidates for isolated massive star formation while moderately magnetized massive dense cores are more appropriate forming OB associations or small star clusters.« less
  • The production of strongly magnetized laser plasmas, of interest for laboratory astrophysics and inertial confinement fusion studies, is presented. This is achieved by coupling a 16 kV pulse-power system. This is achieved by coupling a 16 kV pulse-power system, which generates a magnetic field by means of a split coil, with the ELFIE laser facility at Ecole Polytechnique. In order to influence the plasma dynamics in a significant manner, the system can generate, repetitively and without debris, high amplitude magnetic fields (40 T) in a manner compatible with a high-energy laser environment. A description of the system and preliminary resultsmore » demonstrating the possibility to magnetically collimate plasma jets are given.« less
  • We present a high-resolution (∼ 1.''5) observational study of two massive dust-gas cores, ORI8nw{sub 2} and ORI2{sub 6}, in the Orion molecular cloud using the Combined Array for Research in Millimeter-wave Astronomy. In each region the 3.2 mm continuum emission exhibits a dense and compact dust core at the center with 1-3 solar masses. The cores have number densities exceeding 10{sup 9} cm{sup –3}, which are among the highest volume densities observed in star-forming cores. In both regions the N{sub 2}H{sup +} shows clumpy structures that are spatially displaced from the densest gas. In OIR8nw{sub 2} in particular, the N{submore » 2}H{sup +} shows a noticeable filament structure with a central cavity shell. The calculation for the dynamical state shows that this core can be potentially supported by the magnetic field against its gravitational instability, but the fragmentation might still occur and produce the observed N{sub 2}H{sup +} clumps if the gas density exceeds 5 × 10{sup 7} cm{sup –3} and this value is available within the observed density range. Also, the extremely high density at the core center suggests super-Jeans condition and the possibility for further fragmentation. For the chemical properties, the N{sub 2}H{sup +}-to-HCO{sup +} abundance ratios are shown to be different than those observed in infrared dark clouds. A combined analysis with the other Orion cores and the chemical model suggests that the different abundance ratios can be explained by the low CO abundances in our cores. To further reveal the evolution of such dense cores, higher resolution and sensitivity are required.« less
  • We present a study of dense structures in the L 1495 filament in the Taurus Molecular Cloud and examine its star-forming properties. In particular, we construct a dust extinction map of the filament using deep near-infrared observations, exposing its small-scale structure in unprecedented detail. The filament shows highly fragmented substructures and a high mass-per-length value of M{sub line} = 17 M{sub sun} pc{sup -1}, reflecting star-forming potential in all parts of it. However, a part of the filament, namely B 211, is remarkably devoid of young stellar objects. We argue that in this region the initial filament collapse and fragmentationmore » is still taking place and star formation is yet to occur. In the star-forming part of the filament, we identify 39 cores with masses from 0.4 to 10 M{sub sun} and preferred separations in agreement with the local Jeans length. Most of these cores exceed the Bonnor-Ebert critical mass, and are therefore likely to collapse and form stars. The dense core mass function follows a power law with exponent {Gamma} = 1.2 {+-} 0.2, a form commonly observed in star-forming regions.« less