# Probabilistic Cosmological Mass Mapping from Weak Lensing Shear

## Abstract

We infer gravitational lensing shear and convergence fields from galaxy ellipticity catalogs under a spatial process prior for the lensing potential. We demonstrate the performance of our algorithm with simulated Gaussian-distributed cosmological lensing shear maps and a reconstruction of the mass distribution of the merging galaxy cluster Abell 781 using galaxy ellipticities measured with the Deep Lens Survey. Given interim posterior samples of lensing shear or convergence fields on the sky, we describe an algorithm to infer cosmological parameters via lens field marginalization. In the most general formulation of our algorithm we make no assumptions about weak shear or Gaussian-distributed shape noise or shears. Because we require solutions and matrix determinants of a linear system of dimension that scales with the number of galaxies, we expect our algorithm to require parallel high-performance computing resources for application to ongoing wide field lensing surveys.

- Authors:

- Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States)
- University of California, Davis, Davis, CA 95616 (United States)
- Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94035 (United States)
- Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)
- National Energy Research Scientific Computing Center, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720-8150 (United States)

- Publication Date:

- OSTI Identifier:
- 22661160

- Resource Type:
- Journal Article

- Resource Relation:
- Journal Name: Astrophysical Journal; Journal Volume: 839; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)

- Country of Publication:
- United States

- Language:
- English

- Subject:
- 79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ALGORITHMS; CATALOGS; CONVERGENCE; COSMOLOGY; DATA ANALYSIS; GALAXIES; GALAXY CLUSTERS; GRAVITATIONAL LENSES; MASS; MASS DISTRIBUTION; NOISE; PERFORMANCE; PROBABILISTIC ESTIMATION; RESOURCES; SIMULATION

### Citation Formats

```
Schneider, M. D., Dawson, W. A., Ng, K. Y., Marshall, P. J., Meyers, J. E., and Bard, D. J., E-mail: schneider42@llnl.gov, E-mail: dstn@cmu.edu, E-mail: boutigny@in2p3.fr, E-mail: djbard@slac.stanford.edu, E-mail: jmeyers314@stanford.edu.
```*Probabilistic Cosmological Mass Mapping from Weak Lensing Shear*. United States: N. p., 2017.
Web. doi:10.3847/1538-4357/839/1/25.

```
Schneider, M. D., Dawson, W. A., Ng, K. Y., Marshall, P. J., Meyers, J. E., & Bard, D. J., E-mail: schneider42@llnl.gov, E-mail: dstn@cmu.edu, E-mail: boutigny@in2p3.fr, E-mail: djbard@slac.stanford.edu, E-mail: jmeyers314@stanford.edu.
```*Probabilistic Cosmological Mass Mapping from Weak Lensing Shear*. United States. doi:10.3847/1538-4357/839/1/25.

```
Schneider, M. D., Dawson, W. A., Ng, K. Y., Marshall, P. J., Meyers, J. E., and Bard, D. J., E-mail: schneider42@llnl.gov, E-mail: dstn@cmu.edu, E-mail: boutigny@in2p3.fr, E-mail: djbard@slac.stanford.edu, E-mail: jmeyers314@stanford.edu. Mon .
"Probabilistic Cosmological Mass Mapping from Weak Lensing Shear". United States.
doi:10.3847/1538-4357/839/1/25.
```

```
@article{osti_22661160,
```

title = {Probabilistic Cosmological Mass Mapping from Weak Lensing Shear},

author = {Schneider, M. D. and Dawson, W. A. and Ng, K. Y. and Marshall, P. J. and Meyers, J. E. and Bard, D. J., E-mail: schneider42@llnl.gov, E-mail: dstn@cmu.edu, E-mail: boutigny@in2p3.fr, E-mail: djbard@slac.stanford.edu, E-mail: jmeyers314@stanford.edu},

abstractNote = {We infer gravitational lensing shear and convergence fields from galaxy ellipticity catalogs under a spatial process prior for the lensing potential. We demonstrate the performance of our algorithm with simulated Gaussian-distributed cosmological lensing shear maps and a reconstruction of the mass distribution of the merging galaxy cluster Abell 781 using galaxy ellipticities measured with the Deep Lens Survey. Given interim posterior samples of lensing shear or convergence fields on the sky, we describe an algorithm to infer cosmological parameters via lens field marginalization. In the most general formulation of our algorithm we make no assumptions about weak shear or Gaussian-distributed shape noise or shears. Because we require solutions and matrix determinants of a linear system of dimension that scales with the number of galaxies, we expect our algorithm to require parallel high-performance computing resources for application to ongoing wide field lensing surveys.},

doi = {10.3847/1538-4357/839/1/25},

journal = {Astrophysical Journal},

number = 1,

volume = 839,

place = {United States},

year = {Mon Apr 10 00:00:00 EDT 2017},

month = {Mon Apr 10 00:00:00 EDT 2017}

}