skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Casting the Coronal Magnetic Field Reconstruction Tools in 3D Using the MHD Bifrost Model

Abstract

Quantifying the coronal magnetic field remains a central problem in solar physics. Nowadays, the coronal magnetic field is often modeled using nonlinear force-free field (NLFFF) reconstructions, whose accuracy has not yet been comprehensively assessed. Here we perform a detailed casting of the NLFFF reconstruction tools, such as π -disambiguation, photospheric field preprocessing, and volume reconstruction methods, using a 3D snapshot of the publicly available full-fledged radiative MHD model. Specifically, from the MHD model, we know the magnetic field vector in the entire 3D domain, which enables us to perform a “voxel-by-voxel” comparison of the restored and the true magnetic fields in the 3D model volume. Our tests show that the available π -disambiguation methods often fail in the quiet-Sun areas dominated by small-scale magnetic elements, while they work well in the active region (AR) photosphere and (even better) chromosphere. The preprocessing of the photospheric magnetic field, although it does produce a more force-free boundary condition, also results in some effective “elevation” of the magnetic field components. This “elevation” height is different for the longitudinal and transverse components, which results in a systematic error in absolute heights in the reconstructed magnetic data cube. The extrapolations performed starting from the actual ARmore » photospheric magnetogram are free from this systematic error, while other metrics are comparable with those for extrapolations from the preprocessed magnetograms. This finding favors the use of extrapolations from the original photospheric magnetogram without preprocessing. Our tests further suggest that extrapolations from a force-free chromospheric boundary produce measurably better results than those from a photospheric boundary.« less

Authors:
;  [1]; ;  [2];  [3]
  1. Physics Department, Center for Solar-Terrestrial Research, New Jersey Institute of Technology Newark, NJ, 07102-1982 (United States)
  2. Institute of Solar-Terrestrial Physics (ISZF), Lermontov st., 126a, Irkutsk, 664033 (Russian Federation)
  3. Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034 (Russian Federation)
Publication Date:
OSTI Identifier:
22661156
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal; Journal Volume: 839; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ACCURACY; BOUNDARY CONDITIONS; CHROMOSPHERE; COMPARATIVE EVALUATIONS; ERRORS; EXTRAPOLATION; MAGNETIC FIELDS; MAGNETOHYDRODYNAMICS; PHOTOSPHERE; SUN

Citation Formats

Fleishman, Gregory D., Loukitcheva, Maria, Anfinogentov, Sergey, Mysh’yakov, Ivan, and Stupishin, Alexey. Casting the Coronal Magnetic Field Reconstruction Tools in 3D Using the MHD Bifrost Model. United States: N. p., 2017. Web. doi:10.3847/1538-4357/AA6840.
Fleishman, Gregory D., Loukitcheva, Maria, Anfinogentov, Sergey, Mysh’yakov, Ivan, & Stupishin, Alexey. Casting the Coronal Magnetic Field Reconstruction Tools in 3D Using the MHD Bifrost Model. United States. doi:10.3847/1538-4357/AA6840.
Fleishman, Gregory D., Loukitcheva, Maria, Anfinogentov, Sergey, Mysh’yakov, Ivan, and Stupishin, Alexey. Mon . "Casting the Coronal Magnetic Field Reconstruction Tools in 3D Using the MHD Bifrost Model". United States. doi:10.3847/1538-4357/AA6840.
@article{osti_22661156,
title = {Casting the Coronal Magnetic Field Reconstruction Tools in 3D Using the MHD Bifrost Model},
author = {Fleishman, Gregory D. and Loukitcheva, Maria and Anfinogentov, Sergey and Mysh’yakov, Ivan and Stupishin, Alexey},
abstractNote = {Quantifying the coronal magnetic field remains a central problem in solar physics. Nowadays, the coronal magnetic field is often modeled using nonlinear force-free field (NLFFF) reconstructions, whose accuracy has not yet been comprehensively assessed. Here we perform a detailed casting of the NLFFF reconstruction tools, such as π -disambiguation, photospheric field preprocessing, and volume reconstruction methods, using a 3D snapshot of the publicly available full-fledged radiative MHD model. Specifically, from the MHD model, we know the magnetic field vector in the entire 3D domain, which enables us to perform a “voxel-by-voxel” comparison of the restored and the true magnetic fields in the 3D model volume. Our tests show that the available π -disambiguation methods often fail in the quiet-Sun areas dominated by small-scale magnetic elements, while they work well in the active region (AR) photosphere and (even better) chromosphere. The preprocessing of the photospheric magnetic field, although it does produce a more force-free boundary condition, also results in some effective “elevation” of the magnetic field components. This “elevation” height is different for the longitudinal and transverse components, which results in a systematic error in absolute heights in the reconstructed magnetic data cube. The extrapolations performed starting from the actual AR photospheric magnetogram are free from this systematic error, while other metrics are comparable with those for extrapolations from the preprocessed magnetograms. This finding favors the use of extrapolations from the original photospheric magnetogram without preprocessing. Our tests further suggest that extrapolations from a force-free chromospheric boundary produce measurably better results than those from a photospheric boundary.},
doi = {10.3847/1538-4357/AA6840},
journal = {Astrophysical Journal},
number = 1,
volume = 839,
place = {United States},
year = {Mon Apr 10 00:00:00 EDT 2017},
month = {Mon Apr 10 00:00:00 EDT 2017}
}
  • We present a new implementation of the MHD relaxation method for reconstruction of the nearly force-free coronal magnetic field from a photospheric vector magnetogram. A new numerical MHD scheme is proposed to solve the full MHD equations by using the spacetime conservation-element and solution-element method. The bottom boundary condition is prescribed in a similar way as in the stress-and-relax method, by changing the transverse field incrementally to match the magnetogram, and other boundaries of the computational box are set by the nonreflecting boundary conditions. Applications to the well-known benchmarks for nonlinear force-free-field reconstruction, the Low and Lou force-free equilibria, validatemore » the method and confirm its capability for future practical application, with observed magnetograms as inputs.« less
  • We apply a data-driven magnetohydrodynamics (MHD) model to investigate the three-dimensional (3D) magnetic field of NOAA active region (AR) 11117 around the time of a C-class confined flare that occurred on 2010 October 25. The MHD model, based on the spacetime conservation-element and solution-element scheme, is designed to focus on the magnetic field evolution and to consider a simplified solar atomsphere with finite plasma {beta}. Magnetic vector-field data derived from the observations at the photosphere is inputted directly to constrain the model. Assuming that the dynamic evolution of the coronal magnetic field can be approximated by successive equilibria, we solvemore » a time sequence of MHD equilibria based on a set of vector magnetograms for AR 11117 taken by the Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory around the time of the flare. The model qualitatively reproduces the basic structures of the 3D magnetic field, as supported by the visual similarity between the field lines and the coronal loops observed by the Atmospheric Imaging Assembly, which shows that the coronal field can indeed be well characterized by the MHD equilibrium in most cases. The magnetic configuration changes very little during the studied time interval of 2 hr. A topological analysis reveals that the small flare is correlated with a bald patch (BP, where the magnetic field is tangent to the photosphere), suggesting that the energy release of the flare can be understood by magnetic reconnection associated with the BP separatrices. The total magnetic flux and energy keep increasing slightly in spite of the flare, while the computed magnetic free energy drops during the flare by {approx}10{sup 30} erg, which seems to be adequate in providing the energy budget of a minor C-class confined flare.« less
  • Lorentz transmission electron microscopy (TEM) observations of magnetic nanoparticles contain information on the magnetic and electrostatic potentials. Vector field electron tomography (VFET) can be used to reconstruct electromagnetic potentials of the nanoparticles from their corresponding LTEM images. The VFET approach is based on the conventional filtered back projection approach to tomographic reconstructions and the availability of an incomplete set of measurements due to experimental limitations means that the reconstructed vector fields exhibit significant artifacts. In this paper, we outline a model-based iterative reconstruction (MBIR) algorithm to reconstruct the magnetic vector potential of magnetic nanoparticles. We combine a forward model formore » image formation in TEM experiments with a prior model to formulate the tomographic problem as a maximum a-posteriori probability estimation problem (MAP). The MAP cost function is minimized iteratively to determine the vector potential. Here, a comparative reconstruction study of simulated as well as experimental data sets show that the MBIR approach yields quantifiably better reconstructions than the VFET approach.« less
  • Lorentz transmission electron microscopy (TEM) observations of magnetic nanoparticles contain information on the magnetic and electrostatic potentials. Vector field electron tomography (VFET) can be used to reconstruct electromagnetic potentials of the nanoparticles from their corresponding LTEM images. The VFET approach is based on the conventional filtered back projection approach to tomographic reconstructions and the availability of an incomplete set of measurements due to experimental limitations means that the reconstructed vector fields exhibit significant artifacts. In this paper, we outline a model-based iterative reconstruction (MBIR) algorithm to reconstruct the magnetic vector potential of magnetic nanoparticles. We combine a forward model formore » image formation in TEM experiments with a prior model to formulate the tomographic problem as a maximum a-posteriori probability estimation problem (MAP). The MAP cost function is minimized iteratively to determine the vector potential. As a result, a comparative reconstruction study of simulated as well as experimental data sets show that the MBIR approach yields quantifiably better reconstructions than the VFET approach.« less
  • We develop a three-dimensional kinematic self-sustaining model of the solar dynamo in which the poloidal field generation is from tilted bipolar sunspot pairs placed on the solar surface above regions of strong toroidal field by using the SpotMaker algorithm, and then the transport of this poloidal field to the tachocline is primarily caused by turbulent diffusion. We obtain a dipolar solution within a certain range of parameters. We use this model to study the build-up of the polar magnetic field and show that some insights obtained from surface flux transport models have to be revised. We present results obtained bymore » putting a single bipolar sunspot pair in a hemisphere and two symmetrical sunspot pairs in two hemispheres. We find that the polar fields produced by them disappear due to the upward advection of poloidal flux at low latitudes, which emerges as oppositely signed radial flux and which is then advected poleward by the meridional flow. We also study the effect that a large sunspot pair, violating Hale’s polarity law, would have on the polar field. We find that there would be some effect—especially if the anti-Hale pair appears at high latitudes in the mid-phase of the cycle—though the effect is not very dramatic.« less