skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Vibrational spectroscopy via the Caldeira-Leggett model with anharmonic system potentials

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4946872· OSTI ID:22660864
;  [1]
  1. Institute of Physics, University of Rostock, Albert Einstein Straße 23-24, 18059 Rostock (Germany)

The Caldeira-Leggett (CL) model, which describes a system bi-linearly coupled to a harmonic bath, has enjoyed popularity in condensed phase spectroscopy owing to its utmost simplicity. However, the applicability of the model to cases with anharmonic system potentials, as it is required for the description of realistic systems in solution, is questionable due to the presence of the invertibility problem [F. Gottwald et al., J. Phys. Chem. Lett. 6, 2722 (2015)] unless the system itself resembles the CL model form. This might well be the case at surfaces or in the solid regime, which we here confirm for a particular example of an iodine molecule in the atomic argon environment under high pressure. For this purpose we extend the recently proposed Fourier method for parameterizing linear generalized Langevin dynamics [F. Gottwald et al., J. Chem. Phys. 142, 244110 (2015)] to the non-linear case based on the CL model and perform an extensive error analysis. In order to judge on the applicability of this model in advance, we give practical empirical criteria and discuss the effect of the potential renormalization term. The obtained results provide evidence that the CL model can be used for describing a potentially broad class of systems.

OSTI ID:
22660864
Journal Information:
Journal of Chemical Physics, Vol. 144, Issue 16; Other Information: (c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English