skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: State-of-the-art ab initio potential energy curve for the krypton atom pair and thermophysical properties of dilute krypton gas

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4943959· OSTI ID:22660807
; ; ;  [1]
  1. Institut für Chemie, Universität Rostock, D-18059 Rostock (Germany)

A new reference krypton-krypton interatomic potential energy curve was developed by means of quantum-chemical ab initio calculations for 36 interatomic separations. Highly accurate values for the interaction energies at the complete basis set limit were obtained using the coupled-cluster method with single, double, and perturbative triple excitations as well as t-aug-cc-pV5Z and t-aug-cc-pV6Z basis sets including mid-bond functions, with the 6Z basis set being newly constructed for this study. Higher orders of coupled-cluster terms were considered in a successive scheme up to full quadruple excitations. Core-core and core-valence correlation effects were included. Furthermore, relativistic effects were studied not only at a scalar relativistic level using second-order direct perturbation theory, but also utilizing full four-component and Gaunt-effect computations. An analytical pair potential function was fitted to the interaction energies, which is characterized by a depth of 200.88 K with an estimated standard uncertainty of 0.51 K. Thermophysical properties of low-density krypton were calculated for temperatures up to 5000 K. Second and third virial coefficients were obtained from statistical thermodynamics. Viscosity and thermal conductivity as well as the self-diffusion coefficient were computed using the kinetic theory of gases. The theoretical results are compared with experimental data and with results for other pair potential functions from the literature, especially with those calculated from the recently developed ab initio potential of Waldrop et al. [J. Chem. Phys. 142, 204307 (2015)]. Highly accurate experimental viscosity data indicate that both the present ab initio pair potential and the one of Waldrop et al. can be regarded as reference potentials, even though the quantum-chemical methods and basis sets differ. However, the uncertainties of the present potential and of the derived properties are estimated to be considerably lower.

OSTI ID:
22660807
Journal Information:
Journal of Chemical Physics, Vol. 144, Issue 11; Other Information: (c) 2016 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English

Similar Records

Interactions between anionic and neutral bromine and rare gas atoms
Journal Article · Thu Feb 14 00:00:00 EST 2008 · Journal of Chemical Physics · OSTI ID:22660807

Benchmark Theoretical Study of the π–π Binding Energy in the Benzene Dimer
Journal Article · Thu Sep 04 00:00:00 EDT 2014 · Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory · OSTI ID:22660807

Heats of Formation of Xenon Fluorides and the Fluxionality of XeF₆ from High Level Electronic Structure Calculations
Journal Article · Sat May 28 00:00:00 EDT 2005 · Journal of the American Chemical Society · OSTI ID:22660807