skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Magnetic interactions in praseodymium ruthenate Pr{sub 3}RuO{sub 7} with fluorite-related structure

Abstract

Solid solutions Pr{sub 3}(Ru{sub 1-x}Ta{sub x})O{sub 7} (0≤x≤1.0) and (Pr{sub 1-x}Y{sub x}){sub 3}RuO{sub 7} (0≤x≤0.7) were obtained as a single phase compound. They crystallize in an orthorhombic superstructure derived from that of the cubic fluorite with space group Cmcm. The results of the Rietveld analysis for X-ray diffraction profiles of Pr{sub 3}(Ru{sub 1-x}Ta{sub x})O{sub 7} showed that Ru and Ta atoms are randomly situated at the six-coordinate 4b site. For (Pr{sub 1-x}Y{sub x}){sub 3}RuO{sub 7}, with increasing the concentration of Y ions (x value), the smaller Y ions occupy selectively the seven-coordinate 8g site rather than the eight-coordinate 4a site. Through magnetic susceptibility measurements for Pr{sub 3}(Ru{sub 1-x}Ta{sub x})O{sub 7}, the antiferromagnetic transition temperatures decrease linearly with increasing x value, and at x=0.75 no magnetic ordering was found down to 1.8 K, indicating the magnetic interaction is not one-dimensional, but three-dimensional. On the other hand, the antiferromagnetic transition temperature for (Pr{sub 1-x}Y{sub x}){sub 3}RuO{sub 7} decreases with increasing x value, but above x≥0.50 it becomes constant (~12 K). This result indicates that Pr{sup 3+} ions at the seven-coordinate site greatly contribute to the antiferromagnetic interactions observed in (Pr{sub 1-x}Y{sub x}){sub 3}RuO{sub 7}. Density functional calculations of Pr{sub 3}RuO{sub 7} demonstratemore » that the electronic structure gives insulating character and that oxygen 2p orbitals hybridize strongly with Ru 4d orbitals in the valence band (VB). Near the top of VB, the Pr 4 f orbitals at the seven-coordinated site also show a weak hybridization with the O(1) 2p orbitals. The Ru-O(1)-Pr superexchange pathway take part in three-dimensional magnetic interaction and play an important role in an enhancement of long-range magnetic ordering. - Graphical abstract: The spin densities and the spin polarization of Pr{sub 3}RuO{sub 7} are shown. Significant spin polarization is seen on the magnetic Pr and Ru ions, but there is also some on the O(1), (3) ligands of Ru. - Highlights: • New fluorite-related quaternary praseodymium ruthenates were prepared. • Pr{sub 3}RuO{sub 7} shows an antiferromagnetic transition at 55 K. • The Ru-O-Pr superexchange interactions are three-dimensional.« less

Authors:
; ; ;
Publication Date:
OSTI Identifier:
22658293
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 250; Other Information: Copyright (c) 2017 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; DENSITY FUNCTIONAL METHOD; ELECTRONIC STRUCTURE; EXPERIMENTAL DATA; FLUORINE COMPOUNDS; INTERACTIONS; MAGNETIZATION; ORTHORHOMBIC LATTICES; PRASEODYMIUM IONS; RUTHENIUM COMPOUNDS; RUTHENIUM IONS; SPACE GROUPS; SPIN ORIENTATION; X-RAY DIFFRACTION; YTTRIUM IONS

Citation Formats

Inabayashi, Masaki, Doi, Yoshihiro, Wakeshima, Makoto, and Hinatsu, Yukio, E-mail: hinatsu@sci.hokudai.ac.jp. Magnetic interactions in praseodymium ruthenate Pr{sub 3}RuO{sub 7} with fluorite-related structure. United States: N. p., 2017. Web. doi:10.1016/J.JSSC.2017.03.025.
Inabayashi, Masaki, Doi, Yoshihiro, Wakeshima, Makoto, & Hinatsu, Yukio, E-mail: hinatsu@sci.hokudai.ac.jp. Magnetic interactions in praseodymium ruthenate Pr{sub 3}RuO{sub 7} with fluorite-related structure. United States. doi:10.1016/J.JSSC.2017.03.025.
Inabayashi, Masaki, Doi, Yoshihiro, Wakeshima, Makoto, and Hinatsu, Yukio, E-mail: hinatsu@sci.hokudai.ac.jp. Thu . "Magnetic interactions in praseodymium ruthenate Pr{sub 3}RuO{sub 7} with fluorite-related structure". United States. doi:10.1016/J.JSSC.2017.03.025.
@article{osti_22658293,
title = {Magnetic interactions in praseodymium ruthenate Pr{sub 3}RuO{sub 7} with fluorite-related structure},
author = {Inabayashi, Masaki and Doi, Yoshihiro and Wakeshima, Makoto and Hinatsu, Yukio, E-mail: hinatsu@sci.hokudai.ac.jp},
abstractNote = {Solid solutions Pr{sub 3}(Ru{sub 1-x}Ta{sub x})O{sub 7} (0≤x≤1.0) and (Pr{sub 1-x}Y{sub x}){sub 3}RuO{sub 7} (0≤x≤0.7) were obtained as a single phase compound. They crystallize in an orthorhombic superstructure derived from that of the cubic fluorite with space group Cmcm. The results of the Rietveld analysis for X-ray diffraction profiles of Pr{sub 3}(Ru{sub 1-x}Ta{sub x})O{sub 7} showed that Ru and Ta atoms are randomly situated at the six-coordinate 4b site. For (Pr{sub 1-x}Y{sub x}){sub 3}RuO{sub 7}, with increasing the concentration of Y ions (x value), the smaller Y ions occupy selectively the seven-coordinate 8g site rather than the eight-coordinate 4a site. Through magnetic susceptibility measurements for Pr{sub 3}(Ru{sub 1-x}Ta{sub x})O{sub 7}, the antiferromagnetic transition temperatures decrease linearly with increasing x value, and at x=0.75 no magnetic ordering was found down to 1.8 K, indicating the magnetic interaction is not one-dimensional, but three-dimensional. On the other hand, the antiferromagnetic transition temperature for (Pr{sub 1-x}Y{sub x}){sub 3}RuO{sub 7} decreases with increasing x value, but above x≥0.50 it becomes constant (~12 K). This result indicates that Pr{sup 3+} ions at the seven-coordinate site greatly contribute to the antiferromagnetic interactions observed in (Pr{sub 1-x}Y{sub x}){sub 3}RuO{sub 7}. Density functional calculations of Pr{sub 3}RuO{sub 7} demonstrate that the electronic structure gives insulating character and that oxygen 2p orbitals hybridize strongly with Ru 4d orbitals in the valence band (VB). Near the top of VB, the Pr 4 f orbitals at the seven-coordinated site also show a weak hybridization with the O(1) 2p orbitals. The Ru-O(1)-Pr superexchange pathway take part in three-dimensional magnetic interaction and play an important role in an enhancement of long-range magnetic ordering. - Graphical abstract: The spin densities and the spin polarization of Pr{sub 3}RuO{sub 7} are shown. Significant spin polarization is seen on the magnetic Pr and Ru ions, but there is also some on the O(1), (3) ligands of Ru. - Highlights: • New fluorite-related quaternary praseodymium ruthenates were prepared. • Pr{sub 3}RuO{sub 7} shows an antiferromagnetic transition at 55 K. • The Ru-O-Pr superexchange interactions are three-dimensional.},
doi = {10.1016/J.JSSC.2017.03.025},
journal = {Journal of Solid State Chemistry},
number = ,
volume = 250,
place = {United States},
year = {Thu Jun 15 00:00:00 EDT 2017},
month = {Thu Jun 15 00:00:00 EDT 2017}
}