skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quaternary rare-earth sulfides RE{sub 3}M{sub 0.5}GeS{sub 7} (RE=La–Nd, Sm; M=Co, Ni) and Y{sub 3}Pd{sub 0.5}SiS{sub 7}

Abstract

The two metal-deficient series of quaternary Ge-containing sulfides RE{sub 3}M{sub 0.5}GeS{sub 7} (RE = La–Nd, Sm; M = Co, Ni), as well as the related Si-containing sulfide Y{sub 3}Pd{sub 0.5}SiS{sub 7}, were prepared by reactions of the elements at 1050 °C. Single-crystal X-ray diffraction analysis performed on all compounds confirmed noncentrosymmetric hexagonal structures (space group P6{sub 3}, Z =2) with cell parameters in the ranges of a =10.0–10.3 Å and c =5.7–5.8 Å for RE{sub 3}Co{sub 0.5}GeS{sub 7} and RE{sub 3}Ni{sub 0.5}GeS{sub 7}, or a =9.7891(3) Å and c =5.6840(4) Å for Y{sub 3}Pd{sub 0.5}SiS{sub 7}. They are classified as La{sub 3}Mn{sub 0.5}SiS{sub 7}-type structures, with M atoms centred within octahedra (in contrast to La{sub 3}CuSiS{sub 7}-type structures in which M atoms occupy trigonal planar sites) and Ge atoms centred within tetrahedra, both types of polyhedra being arranged in one-dimensional stacks aligned along the c-direction. Charge balance requirements dictate half-occupancy of the M sites. However, bond valence sum arguments indicated that the M atoms are somewhat underbonded within these octahedral sites, so that there is evidence that in some compounds, they can also enter the trigonal planar site at low occupancy (~5%). Magnetic measurements on RE{sub 3}Co{sub 0.5}GeS{sub 7} (REmore » = Ce, Pr, Sm) revealed paramagnetic behaviour for the Ce and Pr members and apparent antiferromagnetic ordering (T{sub N} =14 K) for the Sm member; fitting to the Curie-Weiss law gave effective magnetic moments consistent with the presence of RE{sup 3+} and Co{sup 2+} species. Band structure calculations on ordered models of La{sub 3}M{sub 0.5}GeS{sub 7} (M = Co, Ni) showed that the Fermi level cuts through M 3d states in the DOS curve and supported the presence of strong M–S and Ge–S bonding interactions. - Graphical abstract: RE{sub 3}M{sub 0.5}GeS{sub 7} (M = Co, Ni) and Y{sub 3}Pd{sub 0.5}SiS{sub 7} contain M atoms partially occupying octahedral and, in some cases, trigonal planar sites within noncentrosymmetric hexagonal structures. - Highlights: • The missing M = Co and Ni series in hexagonal RE{sub 3}M{sub 0.5}GeS{sub 7} have been prepared. • Charge balance is ensured through half occupancy of octahedral M sites. • In some cases, a secondary trigonal planar M site is occupied at very low levels. • Magnetic measurements on RE{sub 3}Co{sub 0.5}GeS{sub 7} support presence of RE{sup 3+} and Co{sup 2+}.« less

Authors:
 [1];  [1];  [2];  [1];  [3];  [1]
  1. Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2 (Canada)
  2. (China)
  3. Centre for Oil Sands Sustainability, Northern Alberta Institute of Technology, Edmonton, Alberta, Canada T6N 1E5 (Canada)
Publication Date:
OSTI Identifier:
22658284
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 250; Other Information: Copyright (c) 2017 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; CATALYST SUPPORTS; COBALT IONS; CURIE-WEISS LAW; EXPERIMENTAL DATA; FERMI LEVEL; HEXAGONAL LATTICES; MAGNETIC MOMENTS; MAGNETIC PROPERTIES; RARE EARTHS; RHENIUM IONS; SPACE GROUPS; SULFIDES; X-RAY DIFFRACTION

Citation Formats

Iyer, Abishek K., Yin, Wenlong, Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, Lee, Emma J., Lin, Xinsong, and Mar, Arthur, E-mail: arthur.mar@ualberta.ca. Quaternary rare-earth sulfides RE{sub 3}M{sub 0.5}GeS{sub 7} (RE=La–Nd, Sm; M=Co, Ni) and Y{sub 3}Pd{sub 0.5}SiS{sub 7}. United States: N. p., 2017. Web. doi:10.1016/J.JSSC.2017.03.009.
Iyer, Abishek K., Yin, Wenlong, Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, Lee, Emma J., Lin, Xinsong, & Mar, Arthur, E-mail: arthur.mar@ualberta.ca. Quaternary rare-earth sulfides RE{sub 3}M{sub 0.5}GeS{sub 7} (RE=La–Nd, Sm; M=Co, Ni) and Y{sub 3}Pd{sub 0.5}SiS{sub 7}. United States. doi:10.1016/J.JSSC.2017.03.009.
Iyer, Abishek K., Yin, Wenlong, Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, Lee, Emma J., Lin, Xinsong, and Mar, Arthur, E-mail: arthur.mar@ualberta.ca. Thu . "Quaternary rare-earth sulfides RE{sub 3}M{sub 0.5}GeS{sub 7} (RE=La–Nd, Sm; M=Co, Ni) and Y{sub 3}Pd{sub 0.5}SiS{sub 7}". United States. doi:10.1016/J.JSSC.2017.03.009.
@article{osti_22658284,
title = {Quaternary rare-earth sulfides RE{sub 3}M{sub 0.5}GeS{sub 7} (RE=La–Nd, Sm; M=Co, Ni) and Y{sub 3}Pd{sub 0.5}SiS{sub 7}},
author = {Iyer, Abishek K. and Yin, Wenlong and Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900 and Lee, Emma J. and Lin, Xinsong and Mar, Arthur, E-mail: arthur.mar@ualberta.ca},
abstractNote = {The two metal-deficient series of quaternary Ge-containing sulfides RE{sub 3}M{sub 0.5}GeS{sub 7} (RE = La–Nd, Sm; M = Co, Ni), as well as the related Si-containing sulfide Y{sub 3}Pd{sub 0.5}SiS{sub 7}, were prepared by reactions of the elements at 1050 °C. Single-crystal X-ray diffraction analysis performed on all compounds confirmed noncentrosymmetric hexagonal structures (space group P6{sub 3}, Z =2) with cell parameters in the ranges of a =10.0–10.3 Å and c =5.7–5.8 Å for RE{sub 3}Co{sub 0.5}GeS{sub 7} and RE{sub 3}Ni{sub 0.5}GeS{sub 7}, or a =9.7891(3) Å and c =5.6840(4) Å for Y{sub 3}Pd{sub 0.5}SiS{sub 7}. They are classified as La{sub 3}Mn{sub 0.5}SiS{sub 7}-type structures, with M atoms centred within octahedra (in contrast to La{sub 3}CuSiS{sub 7}-type structures in which M atoms occupy trigonal planar sites) and Ge atoms centred within tetrahedra, both types of polyhedra being arranged in one-dimensional stacks aligned along the c-direction. Charge balance requirements dictate half-occupancy of the M sites. However, bond valence sum arguments indicated that the M atoms are somewhat underbonded within these octahedral sites, so that there is evidence that in some compounds, they can also enter the trigonal planar site at low occupancy (~5%). Magnetic measurements on RE{sub 3}Co{sub 0.5}GeS{sub 7} (RE = Ce, Pr, Sm) revealed paramagnetic behaviour for the Ce and Pr members and apparent antiferromagnetic ordering (T{sub N} =14 K) for the Sm member; fitting to the Curie-Weiss law gave effective magnetic moments consistent with the presence of RE{sup 3+} and Co{sup 2+} species. Band structure calculations on ordered models of La{sub 3}M{sub 0.5}GeS{sub 7} (M = Co, Ni) showed that the Fermi level cuts through M 3d states in the DOS curve and supported the presence of strong M–S and Ge–S bonding interactions. - Graphical abstract: RE{sub 3}M{sub 0.5}GeS{sub 7} (M = Co, Ni) and Y{sub 3}Pd{sub 0.5}SiS{sub 7} contain M atoms partially occupying octahedral and, in some cases, trigonal planar sites within noncentrosymmetric hexagonal structures. - Highlights: • The missing M = Co and Ni series in hexagonal RE{sub 3}M{sub 0.5}GeS{sub 7} have been prepared. • Charge balance is ensured through half occupancy of octahedral M sites. • In some cases, a secondary trigonal planar M site is occupied at very low levels. • Magnetic measurements on RE{sub 3}Co{sub 0.5}GeS{sub 7} support presence of RE{sup 3+} and Co{sup 2+}.},
doi = {10.1016/J.JSSC.2017.03.009},
journal = {Journal of Solid State Chemistry},
number = ,
volume = 250,
place = {United States},
year = {Thu Jun 15 00:00:00 EDT 2017},
month = {Thu Jun 15 00:00:00 EDT 2017}
}