skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Short-length and high-density TiO{sub 2} nanorod arrays for the efficient charge separation interface in perovskite solar cells

Abstract

The TiO{sub 2} nanorod arrays with the length of 70 nm, the diameter of 20 nm, and the areal density of 1000 µm{sup −2} were firstly prepared by the hydrothermal method using the aqueous grown solution of 38 mM titanium isopropoxide and 6 M hydrochloric acid at 170 °C for 60 min. Over-500 nm-thickness CH{sub 3}NH{sub 3}PbI{sub 3−x}Br{sub x} absorber layers were successfully obtained by sequential deposition routes using 1.7 M PbI{sub 2}·DMSO complex precursor solution and 0.465 M isopropanol solution of the methylammonium halide mixture with the molar ratio of CH{sub 3}NH{sub 3}I/CH{sub 3}NH{sub 3}Br=85/15. The perovskite solar cells based on the TiO{sub 2} nanorod array and 560 nm-thickness CH{sub 3}NH{sub 3}PbI{sub 3−x}Br{sub x} absorber layer exhibited the best photoelectric conversion efficiency (PCE) of 15.93%, while the corresponding planar perovskite solar cells without the TiO{sub 2} nanorod array and with 530 nm-thickness CH{sub 3}NH{sub 3}PbI{sub 3−x}Br{sub x} absorber layer gave the best PCE of 12.82% at the relative humidity of 50–54%. - Graphical abstract: The TiO{sub 2} nanorod arrays with the length of 70 nm, the diameter of 20 nm, and the areal density of 1000 µm{sup −2} were prepared by the hydrothermal method using the aqueous grown solutionmore » of 38 mM titanium isopropoxide and 6 M hydrochloric acid at 170 °C for 60 min. The optimal annealing temperature of TiO{sub 2} nanorod arrays was 450 °C. The perovskite solar cells based on the TiO{sub 2} nanorod array and 560 nm-thickness CH{sub 3}NH{sub 3}PbI{sub 3−x}Br{sub x} absorber layer exhibited the best photoelectric conversion efficiency (PCE) of 15.93% and the average PCE of 13.41±2.52%, while the corresponding planar perovskite solar cells without the TiO{sub 2} nanorod array and with 530 nm-thickness CH{sub 3}NH{sub 3}PbI{sub 3−x}Br{sub x} absorber layer gave the best PCE of 12.82% and the average PCE of 10.54±2.28% at the relative humidity of 50–54%. - Highlights: • Preparation of TiO{sub 2} nanorod array with length of 70 nm and density of 1000 µm{sup −2}. • Influence of annealing temperatures on the -OH content of TiO{sub 2} nanorod arrays. • Preparation of over-500 nm-thickness CH{sub 3}NH{sub 3}PbI{sub 3−x}Br{sub x} absorber layer. • Combination of short-length TiO{sub 2} nanorod array and high-thickness perovskite layer. • The best and average PCE with TiO{sub 2} array of 15.93% and 13.41±2.52% at 50–54% RH.« less

Authors:
; ; ; ;
Publication Date:
OSTI Identifier:
22658274
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 249; Other Information: Copyright (c) 2017 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; 77 NANOSCIENCE AND NANOTECHNOLOGY; AQUEOUS SOLUTIONS; DENSITY; EFFICIENCY; HYDROCHLORIC ACID; HYDROTHERMAL SYNTHESIS; LAYERS; LEAD IODIDES; NANOSTRUCTURES; OXIDATION; PEROVSKITE; SOLAR CELLS; TITANIUM OXIDES

Citation Formats

Xiao, Guannan, Shi, Chengwu, E-mail: shicw506@foxmail.com, Zhang, Zhengguo, Li, Nannan, and Li, Long. Short-length and high-density TiO{sub 2} nanorod arrays for the efficient charge separation interface in perovskite solar cells. United States: N. p., 2017. Web. doi:10.1016/J.JSSC.2017.03.005.
Xiao, Guannan, Shi, Chengwu, E-mail: shicw506@foxmail.com, Zhang, Zhengguo, Li, Nannan, & Li, Long. Short-length and high-density TiO{sub 2} nanorod arrays for the efficient charge separation interface in perovskite solar cells. United States. doi:10.1016/J.JSSC.2017.03.005.
Xiao, Guannan, Shi, Chengwu, E-mail: shicw506@foxmail.com, Zhang, Zhengguo, Li, Nannan, and Li, Long. Mon . "Short-length and high-density TiO{sub 2} nanorod arrays for the efficient charge separation interface in perovskite solar cells". United States. doi:10.1016/J.JSSC.2017.03.005.
@article{osti_22658274,
title = {Short-length and high-density TiO{sub 2} nanorod arrays for the efficient charge separation interface in perovskite solar cells},
author = {Xiao, Guannan and Shi, Chengwu, E-mail: shicw506@foxmail.com and Zhang, Zhengguo and Li, Nannan and Li, Long},
abstractNote = {The TiO{sub 2} nanorod arrays with the length of 70 nm, the diameter of 20 nm, and the areal density of 1000 µm{sup −2} were firstly prepared by the hydrothermal method using the aqueous grown solution of 38 mM titanium isopropoxide and 6 M hydrochloric acid at 170 °C for 60 min. Over-500 nm-thickness CH{sub 3}NH{sub 3}PbI{sub 3−x}Br{sub x} absorber layers were successfully obtained by sequential deposition routes using 1.7 M PbI{sub 2}·DMSO complex precursor solution and 0.465 M isopropanol solution of the methylammonium halide mixture with the molar ratio of CH{sub 3}NH{sub 3}I/CH{sub 3}NH{sub 3}Br=85/15. The perovskite solar cells based on the TiO{sub 2} nanorod array and 560 nm-thickness CH{sub 3}NH{sub 3}PbI{sub 3−x}Br{sub x} absorber layer exhibited the best photoelectric conversion efficiency (PCE) of 15.93%, while the corresponding planar perovskite solar cells without the TiO{sub 2} nanorod array and with 530 nm-thickness CH{sub 3}NH{sub 3}PbI{sub 3−x}Br{sub x} absorber layer gave the best PCE of 12.82% at the relative humidity of 50–54%. - Graphical abstract: The TiO{sub 2} nanorod arrays with the length of 70 nm, the diameter of 20 nm, and the areal density of 1000 µm{sup −2} were prepared by the hydrothermal method using the aqueous grown solution of 38 mM titanium isopropoxide and 6 M hydrochloric acid at 170 °C for 60 min. The optimal annealing temperature of TiO{sub 2} nanorod arrays was 450 °C. The perovskite solar cells based on the TiO{sub 2} nanorod array and 560 nm-thickness CH{sub 3}NH{sub 3}PbI{sub 3−x}Br{sub x} absorber layer exhibited the best photoelectric conversion efficiency (PCE) of 15.93% and the average PCE of 13.41±2.52%, while the corresponding planar perovskite solar cells without the TiO{sub 2} nanorod array and with 530 nm-thickness CH{sub 3}NH{sub 3}PbI{sub 3−x}Br{sub x} absorber layer gave the best PCE of 12.82% and the average PCE of 10.54±2.28% at the relative humidity of 50–54%. - Highlights: • Preparation of TiO{sub 2} nanorod array with length of 70 nm and density of 1000 µm{sup −2}. • Influence of annealing temperatures on the -OH content of TiO{sub 2} nanorod arrays. • Preparation of over-500 nm-thickness CH{sub 3}NH{sub 3}PbI{sub 3−x}Br{sub x} absorber layer. • Combination of short-length TiO{sub 2} nanorod array and high-thickness perovskite layer. • The best and average PCE with TiO{sub 2} array of 15.93% and 13.41±2.52% at 50–54% RH.},
doi = {10.1016/J.JSSC.2017.03.005},
journal = {Journal of Solid State Chemistry},
number = ,
volume = 249,
place = {United States},
year = {Mon May 15 00:00:00 EDT 2017},
month = {Mon May 15 00:00:00 EDT 2017}
}