skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Magnetic interactions in rhenium-containing rare earth double perovskites Sr{sub 2}LnReO{sub 6} (Ln=rare earths)

Abstract

The perovskite-type compounds containing both rare earth and rhenium Sr{sub 2}LnReO{sub 6} (Ln=Y, Tb-Lu) have been prepared. Powder X-ray diffraction measurements and Rietveld analysis show that Ln{sup 3+} and Re{sup 5+} ions are structurally ordered at the B site of the perovskite SrBO{sub 3}. Magnetic anomalies are found in their magnetic susceptibility and specific heat measurements at 2.6–20 K for Ln=Y, Tb, Dy, Yb, Lu compounds. They are due to magnetic interactions between Re{sup 5+} ions. The results of the magnetic hysteresis and remnant magnetization measurements for Sr{sub 2}YReO{sub 6} and Sr{sub 2}LuReO{sub 6} indicate that the antiferromagnetic interactions between Re{sup 5+} ions below transition temperatures have a weak ferromagnetic component. The analysis of the magnetic specific heat data for Sr{sub 2}YbReO{sub 6} shows that both the Yb{sup 3+} and Re{sup 5+} ions magnetically order at 20 K. For the case of Sr{sub 2}DyReO{sub 6}, magnetic ordering of the Re{sup 5+} moments occurs at 93 K, and with decreasing temperature, the moments of Dy{sup 3+} ferromagnetically order at 5 K from the measurements of magnetic susceptibility and specific heat. - Graphical abstract: Crystal structure of double perovskite Sr{sub 2}LnReO{sub 6}. Red and black lines show cubic and monoclinic unit cells,more » respectively. - Highlights: • Double perovskites Sr{sub 2}LnReO{sub 6} (Ln=rare earths) were prepared. • They show an antiferromagnetic transition at 2.6–20 K. • In Sr{sub 2}DyReO{sub 6}, Dy and Re moments magnetically order at 5 and 93 K, respectively.« less

Authors:
; ;
Publication Date:
OSTI Identifier:
22658246
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 248; Other Information: Copyright (c) 2017 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; DYSPROSIUM IONS; INTERACTIONS; LANTHANUM COMPOUNDS; LUTETIUM COMPOUNDS; MAGNETIC SPECIFIC HEAT; MAGNETIC SUSCEPTIBILITY; MAGNETIZATION; MONOCLINIC LATTICES; PEROVSKITE; RARE EARTHS; RHENIUM IONS; RHENIUM OXIDES; STRONTIUM COMPOUNDS; TRANSITION TEMPERATURE; X RADIATION; X-RAY DIFFRACTION; YTTERBIUM IONS

Citation Formats

Nishiyama, Atsuhide, Doi, Yoshihiro, and Hinatsu, Yukio, E-mail: hinatsu@sci.hokudai.ac.jp. Magnetic interactions in rhenium-containing rare earth double perovskites Sr{sub 2}LnReO{sub 6} (Ln=rare earths). United States: N. p., 2017. Web. doi:10.1016/J.JSSC.2017.02.006.
Nishiyama, Atsuhide, Doi, Yoshihiro, & Hinatsu, Yukio, E-mail: hinatsu@sci.hokudai.ac.jp. Magnetic interactions in rhenium-containing rare earth double perovskites Sr{sub 2}LnReO{sub 6} (Ln=rare earths). United States. doi:10.1016/J.JSSC.2017.02.006.
Nishiyama, Atsuhide, Doi, Yoshihiro, and Hinatsu, Yukio, E-mail: hinatsu@sci.hokudai.ac.jp. Sat . "Magnetic interactions in rhenium-containing rare earth double perovskites Sr{sub 2}LnReO{sub 6} (Ln=rare earths)". United States. doi:10.1016/J.JSSC.2017.02.006.
@article{osti_22658246,
title = {Magnetic interactions in rhenium-containing rare earth double perovskites Sr{sub 2}LnReO{sub 6} (Ln=rare earths)},
author = {Nishiyama, Atsuhide and Doi, Yoshihiro and Hinatsu, Yukio, E-mail: hinatsu@sci.hokudai.ac.jp},
abstractNote = {The perovskite-type compounds containing both rare earth and rhenium Sr{sub 2}LnReO{sub 6} (Ln=Y, Tb-Lu) have been prepared. Powder X-ray diffraction measurements and Rietveld analysis show that Ln{sup 3+} and Re{sup 5+} ions are structurally ordered at the B site of the perovskite SrBO{sub 3}. Magnetic anomalies are found in their magnetic susceptibility and specific heat measurements at 2.6–20 K for Ln=Y, Tb, Dy, Yb, Lu compounds. They are due to magnetic interactions between Re{sup 5+} ions. The results of the magnetic hysteresis and remnant magnetization measurements for Sr{sub 2}YReO{sub 6} and Sr{sub 2}LuReO{sub 6} indicate that the antiferromagnetic interactions between Re{sup 5+} ions below transition temperatures have a weak ferromagnetic component. The analysis of the magnetic specific heat data for Sr{sub 2}YbReO{sub 6} shows that both the Yb{sup 3+} and Re{sup 5+} ions magnetically order at 20 K. For the case of Sr{sub 2}DyReO{sub 6}, magnetic ordering of the Re{sup 5+} moments occurs at 93 K, and with decreasing temperature, the moments of Dy{sup 3+} ferromagnetically order at 5 K from the measurements of magnetic susceptibility and specific heat. - Graphical abstract: Crystal structure of double perovskite Sr{sub 2}LnReO{sub 6}. Red and black lines show cubic and monoclinic unit cells, respectively. - Highlights: • Double perovskites Sr{sub 2}LnReO{sub 6} (Ln=rare earths) were prepared. • They show an antiferromagnetic transition at 2.6–20 K. • In Sr{sub 2}DyReO{sub 6}, Dy and Re moments magnetically order at 5 and 93 K, respectively.},
doi = {10.1016/J.JSSC.2017.02.006},
journal = {Journal of Solid State Chemistry},
number = ,
volume = 248,
place = {United States},
year = {Sat Apr 15 00:00:00 EDT 2017},
month = {Sat Apr 15 00:00:00 EDT 2017}
}
  • A series of double perovskite-type oxides Ba{sub 2}LnMO{sub 6} (Ln=lanthanides; M=Sb, Bi) were synthesized and their structures were studied. The Ln and M are structurally ordered in the rock-salt type at the B-site of the perovskite ABO{sub 3}. For Ba{sub 2}PrBiO{sub 6} and Ba{sub 2}TbBiO{sub 6}, it has been found that the disordering between Ln ion and Bi ion occurs at the B-site of the double perovskite and both the Pr (Tb) and Bi exist in two oxidation state in the same compound from the analysis of the X-ray diffraction and magnetic susceptibility data. Magnetic susceptibility measurements show that allmore » these compounds are paramagnetic and have no magnetic ordering down to 1.8 K. - Graphical abstract: Tolerance factor for Ba{sub 2}LnMO{sub 6} (M=Sb, Bi) plotted against the ionic radius of Ln{sup 3+}. We have found that there is a clear relation between crystal structures and tolerance factors. - Highlights: • The Ln and M ions are structurally ordered in the rock-salt type at the B-site. • The disordering between Pr (Tb) ion and Bi ion occurs at the B-site. • Ba{sub 2}LnMO{sub 6} (M=Sb, Bi) have no magnetic ordering down to 1.8 K.« less
  • The perovskite-type compounds containing both rare earth and osmium Ba{sub 2}LnOsO{sub 6} (Ln=Pr, Nd, Sm–Lu) have been prepared. Powder X-ray diffraction measurements and Rietveld analysis show that Ln{sup 3+} and Os{sup 5+} ions are structurally ordered at the M site of the perovskite BaMO{sub 3}. Magnetic susceptibility and specific heat measurements show that an antiferromagnetic ordering of Os{sup 5+} ions has been observed for Ba{sub 2}LnOsO{sub 6} (Ln=Pr, Nd, Sm, Eu, Gd, Lu) at 65–71 K. Magnetic ordering of Ln{sup 3+} moments occurs when the temperature is furthermore decreased. - Graphical abstract: The perovskite-type compounds containing both rare earth andmore » osmium Ba{sub 2}LnOsO{sub 6} (Ln=Pr, Nd, Sm–Lu) have been prepared. An antiferromagnetic ordering of Os{sup 5+} ions has been observed for Ba{sub 2}LnOsO{sub 6} (Ln=Pr, Nd, Sm, Eu, Gd, Lu) at 65–71 K. Measurements and analysis of the specific heat for Ba{sub 2}PrOsO{sub 6} show that magnetic ordering of the Pr{sup 3+} moments should have occurred at ∼20 K. Display Omitted.« less
  • Structures and magnetic properties of double perovskite-type oxides Eu{sub 2}LnTaO{sub 6} (Ln=Eu, Dy-Lu) were investigated. These compounds adopt a distorted double perovskite structure with space group P2{sub 1}/n. Magnetic susceptibility, specific heat, and {sup 151}Eu Moessbauer spectrum measurements show that the Eu{sup 2+} ions at the 12-coordinate sites of the perovskite structure are antiferromagnetically ordered at {approx}4 K, and that Ln{sup 3+} ions at the 6-coordinate site are in the paramagnetic state down to 1.8 K. - Graphical abstract: Magnetic properties of double perovskite-type oxides Eu{sub 2}LnTaO{sub 6} (Ln=Eu, Dy-Lu) were investigated. Magnetic susceptibility, specific heat, and {sup 151}Eu Moessbauermore » spectrum measurements show that the Eu{sup 2+} ions at the 12-coordinate sites of the perovskite structure are antiferromagnetically ordered at {approx}4 K. Highlights: > Crystal structures of double perovskites Eu{sub 2}LnTaO{sub 6} (Ln=rare earth) were determined. > We found that these compounds show an antiferromagnetic ordering at {approx}4 K. > The magnetic ordering is due to the interactions of Eu{sup 2+} ions. > It was elucidated by specific heat and {sup 151}Eu Moessbauer spectrum measurements.« less
  • New fluorite-related quaternary rare earth oxides Pr{sub 2}YRuO{sub 7} and La{sub 2}TbRuO{sub 7} have been prepared. They crystallize in an orthorhombic superstructure of cubic fluorite with space group Cmcm. Through magnetic susceptibility and specific heat measurements, Pr{sub 2}YRuO{sub 7} shows an antiferromagnetic transition at 27 K, which is considerably lowered compared with that for Pr{sub 3}RuO{sub 7}. Analysis of the magnetic specific heat indicates that the magnetic behavior observed at 27 K for Pr{sub 2}YRuO{sub 7} is predominantly due to the magnetic interactions between Ru ions, and that the interactions between the Pr{sup 3+} and Ru{sup 5+} ions are alsomore » important. La{sub 2}TbRuO{sub 7} shows magnetic ordering at 9.0 K, which is ascribed to the magnetic ordering between Ru{sup 5+} ions from the analysis of the magnetic specific heat data. - Graphical abstract: New fluorite-related quaternary rare earth oxides Pr{sub 2}YRuO{sub 7} and La{sub 2}TbRuO{sub 7} have been prepared. Through magnetic susceptibility and specific heat measurements, Pr{sub 2}YRuO{sub 7} and La{sub 2}TbRuO{sub 7} show an antiferromagnetic transition at 27 and 9.0 K, respectively. Display Omitted - Highlights: • New fluorite-related quaternary rare earth oxides LnLn’{sub 2}RuO{sub 7} have been prepared. • Pr{sub 2}YRuO{sub 7} shows an antiferromagnetic transition at 27 K. • La{sub 2}TbRuO{sub 7} shows magnetic ordering at 9.0 K. • Their magnetic exchange mechanism has been elucidated by the magnetic entropy change.« less