skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The role of deep acceptor centers in the oxidation of acceptor-doped wide-band-gap perovskites ABO{sub 3}

Abstract

The impact of deep acceptor centers on defect thermodynamics and oxidation of wide-band-gap acceptor-doped perovskites without mixed-valence cations is studied. These deep centers are formed by the acceptor-bound small hole polarons whose stabilization energy can be high enough (significantly higher than the hole-acceptor Coulomb interaction energy). It is shown that the oxidation enthalpy ΔH{sub ox} of oxide is determined by the energy ε{sub A} of acceptor-bound states along with the formation energy E{sub V} of oxygen vacancies. The oxidation reaction is demonstrated to be either endothermic or exothermic, and the regions of ε{sub A} and E{sub V} values corresponding to the positive or negative ΔH{sub ox} are determined. The contribution of acceptor-bound holes to the defect thermodynamics strongly depends on the acceptor states depth ε{sub A}: it becomes negligible at ε{sub A} less than a certain value (at which the acceptor levels are still deep). With increasing ε{sub A}, the concentration of acceptor-bound small hole polarons can reach the values comparable to the dopant content. The results are illustrated with the acceptor-doped BaZrO{sub 3} as an example. It is shown that the experimental data on the bulk hole conductivity of barium zirconate can be described both in the band transportmore » model and in the model of hopping small polarons localized on oxygen ions away from the acceptor centers. Depending on the ε{sub A} magnitude, the oxidation reaction can be either endothermic or exothermic for both mobility mechanisms.« less

Authors:
;
Publication Date:
OSTI Identifier:
22658229
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 247; Other Information: Copyright (c) 2017 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; BARIUM COMPOUNDS; DOPED MATERIALS; EXPERIMENTAL DATA; FORMATION HEAT; OXIDATION; OXIDES; OXYGEN IONS; PEROVSKITES; POLARONS

Citation Formats

Putilov, L.P., E-mail: lev.putilov@gmail.com, and Tsidilkovski, V.I. The role of deep acceptor centers in the oxidation of acceptor-doped wide-band-gap perovskites ABO{sub 3}. United States: N. p., 2017. Web. doi:10.1016/J.JSSC.2017.01.010.
Putilov, L.P., E-mail: lev.putilov@gmail.com, & Tsidilkovski, V.I. The role of deep acceptor centers in the oxidation of acceptor-doped wide-band-gap perovskites ABO{sub 3}. United States. doi:10.1016/J.JSSC.2017.01.010.
Putilov, L.P., E-mail: lev.putilov@gmail.com, and Tsidilkovski, V.I. Wed . "The role of deep acceptor centers in the oxidation of acceptor-doped wide-band-gap perovskites ABO{sub 3}". United States. doi:10.1016/J.JSSC.2017.01.010.
@article{osti_22658229,
title = {The role of deep acceptor centers in the oxidation of acceptor-doped wide-band-gap perovskites ABO{sub 3}},
author = {Putilov, L.P., E-mail: lev.putilov@gmail.com and Tsidilkovski, V.I.},
abstractNote = {The impact of deep acceptor centers on defect thermodynamics and oxidation of wide-band-gap acceptor-doped perovskites without mixed-valence cations is studied. These deep centers are formed by the acceptor-bound small hole polarons whose stabilization energy can be high enough (significantly higher than the hole-acceptor Coulomb interaction energy). It is shown that the oxidation enthalpy ΔH{sub ox} of oxide is determined by the energy ε{sub A} of acceptor-bound states along with the formation energy E{sub V} of oxygen vacancies. The oxidation reaction is demonstrated to be either endothermic or exothermic, and the regions of ε{sub A} and E{sub V} values corresponding to the positive or negative ΔH{sub ox} are determined. The contribution of acceptor-bound holes to the defect thermodynamics strongly depends on the acceptor states depth ε{sub A}: it becomes negligible at ε{sub A} less than a certain value (at which the acceptor levels are still deep). With increasing ε{sub A}, the concentration of acceptor-bound small hole polarons can reach the values comparable to the dopant content. The results are illustrated with the acceptor-doped BaZrO{sub 3} as an example. It is shown that the experimental data on the bulk hole conductivity of barium zirconate can be described both in the band transport model and in the model of hopping small polarons localized on oxygen ions away from the acceptor centers. Depending on the ε{sub A} magnitude, the oxidation reaction can be either endothermic or exothermic for both mobility mechanisms.},
doi = {10.1016/J.JSSC.2017.01.010},
journal = {Journal of Solid State Chemistry},
number = ,
volume = 247,
place = {United States},
year = {Wed Mar 15 00:00:00 EDT 2017},
month = {Wed Mar 15 00:00:00 EDT 2017}
}
  • Nanocrystalline Zn 2SnO 4 powders doped with Eu 3+ ions were synthesized via a mechanochemical solid-state reaction method followed by postannealing in air at 1200 °C. X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and Raman and photoluminescence (PL) spectroscopies provide convincing evidence for the incorporation of Eu 3+ ions into the host matrix on noncentrosymmetric sites of the cubic inverse spinel lattice. Microstructural analysis shows that the crystalline grain size decreases with the addition of Eu 3+. Formation of a nanocrystalline Eu 2Sn 2O 7 secondary phase is also observed. Luminescence spectra of Eu 3+-doped samples show several emissions, including narrow-bandmore » magnetic dipole emission at 595 nm and electric dipole emission at 615 nm of the Eu 3+ ions. Excitation spectra and lifetime measurements suggest that Eu 3+ ions are incorporated at only one symmetry site. According to the crystal field theory, it is assumed that Eu 3+ ions participate at octahedral sites of Zn 2+ or Sn 4+ under a weak crystal field, rather than at the tetrahedral sites of Zn2+, because of the high octahedral stabilization energy for Eu 3+. Activation of symmetry forbidden (IR-active and silent) modes is observed in the Raman scattering spectra of both pure and doped samples, indicating a disorder of the cation sublattice of Zn 2SnO 4 nanocrystallites. These results were further supported by the first principle lattice dynamics calculations. The spinel-type Zn 2SnO 4 shows effectiveness in hosting Eu 3+ ions, which could be used as a prospective green/red emitter. As a result, this work also illustrates how sustainable and simple preparation methods could be used for effective engineering of material properties.« less
  • Bi{sub 0.9}La{sub 0.1}FeO{sub 3} (BLFO) and Bi{sub 0.9}La{sub 0.1}Fe{sub 0.99}Zn{sub 0.01}O{sub 3} (BLFZO) nanoparticles were prepared via a sol-gel method. The oxygen vacancies and holes increase with Zn doping analyzed through X-ray photoelectron spectroscopy, which could contribute to the increase of leakage current density. However, with the increase of the defects (oxygen vacancies and holes), the band gap of BLFZO also is increased. To explain the abnormal phenomenon, the bandwidth of occupied and unoccupied bands was analyzed based on the structural symmetry driven by the Fe-O-Fe bond angle and Fe-O bond anisotropy.
  • Organometal halide perovskite semiconductors have emerged as promising candidates for optoelectronic applications because of the outstanding charge carrier transport properties, achieved with low-temperature synthesis. In this paper, we present highly sensitive sub-bandgap external quantum efficiency (EQE) measurements of Au/spiro-OMeTAD/CH 3NH 3Pb(I 1–xBr x) 3/TiO 2/FTO/glass photovoltaic devices. The room-temperature spectra show exponential band tails with a sharp onset characterized by low Urbach energies (E u) over the full halide composition space. The Urbach energies are 15–23 meV, lower than those for most semiconductors with similar bandgaps (especially with E g > 1.9 eV). Intentional aging of CH 3NH 3Pb(I 1–xBrmore » x) 3 for up to 2300 h, reveals no change in E u, despite the appearance of the PbI 2 phase due to decomposition, and confirms a high degree of crystal ordering. Moreover, sub-bandgap EQE measurements reveal an extended band of sub-bandgap electronic states that can be fit with one or two point defects for pure CH 3NH 3PbI 3 or mixed CH 3NH 3Pb(I 1–xBr x) 3 compositions, respectively. Finally, the study provides experimental evidence of defect states close to the midgap that could impact photocarrier recombination and energy conversion efficiency in higher bandgap CH 3NH 3Pb(I 1–xBr x) 3 alloys.« less
  • Cited by 12
  • The electronic, optical and thermodynamic properties of ABO 3 (A = La,Sr, B = Fe,Co) perovskites are investigated using first-principles calculations. The obtained results indicate that SrCoO 3 and SrFeO 3 are metals, while LaCoO 3 and LaFeO 3 are insulators and all of them exhibit strong hybridization of the Fe/Co-3d and O-2p orbitals. By correlating the energy band structures with the peaks of the imaginary part of the dielectric function, we obtained the origin of each electron excitation to provide information about the active bands for the corresponding optical transitions observed in the experiment. Moreover, the Debye temperatures θmore » D obtained from the phonon frequencies are comparable to the available data. In conclusion, the thermodynamic properties of the Helmholtz free energy F, entropy S, and constant-volume heat capacity C v are investigated based on the phonon spectra.« less