skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of Mg substitution on crystal structure and hydrogenation of Ce{sub 2}Ni{sub 7}-type Pr{sub 2}Ni{sub 7}

Journal Article · · Journal of Solid State Chemistry
 [1];  [2];  [3]; ;  [1]
  1. Department of Materials Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi 316-8511 (Japan)
  2. Research Reactor Institute, Kyoto University, 2-1010 Asashiro-nishi, Kumatori, Sennan, Osaka 590-0494 (Japan)
  3. Japan Metals & Chemicals Co., Ltd., Nishiokitama-gun, Yamagata 999-1351 (Japan)

The effect of Pr being substituted by Mg in Pr{sub 2}Ni{sub 7} with a Ce{sub 2}Ni{sub 7}-type structure was investigated by X-ray diffraction (XRD) and pressure−composition (P−C) isotherm measurements. The maximum hydrogen capacity of Pr{sub 2}Ni{sub 7} reached 1.24 H/M in the first absorption process. However, 0.61 H/M hydrogen remained in the sample after the first desorption and the reversible hydrogen capacity decreased to 0.63 H/M. Severe peak broadening was observed in the XRD profile of Pr{sub 2}Ni{sub 7}H{sub 5.4} after the first P−C isotherm cycle. The metal sublattice of Pr{sub 2}Ni{sub 7}H{sub 5.4} is deformed and changes from the Ce{sub 2}Ni{sub 7}-type structure to a lower symmetry during hydrogenation, with no detection of an amorphous phase. Pr{sub 1.5}Mg{sub 0.5}Ni{sub 7} consists of two phases: 80% Gd{sub 2}Co{sub 7}-type and 20% PuNi{sub 3}-type phases. Mg substitution leads to the relative stability of the Gd{sub 2}Co{sub 7}-type and PuNi{sub 3}-type structures. The Gd{sub 2}Co{sub 7}-type and PuNi{sub 3}-type structures are retained after the P-C isotherm. The reversible hydrogen capacity reached 1.05 H/M. The structural change during the hydrogen absorption−desorption cycle and the hydrogenation characteristics are changed by Mg atoms replacing Pr in the MgZn{sub 2}-type cell. - Graphical abstract: The maximum hydrogen capacity is 1.2 H/M in the first absorption process and the reversible capacity is 0.63 H/M.

OSTI ID:
22658228
Journal Information:
Journal of Solid State Chemistry, Vol. 247; Other Information: Copyright (c) 2017 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English