skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Investigation of structural and electrochemical properties of LaSrCo{sub 1−x}Sb{sub x}O{sub 4} (0≤x≤0.20) as potential cathode materials in intermediate-temperature solid oxide fuel cells

Abstract

The structural and electrochemical properties of the layered perovskite oxides LaSrCo{sub 1−x}Sb{sub x}O{sub 4} (0≤x≤0.20) were investigated to study the effects of substituting Sb for Co for application as cathode materials in intermediate temperature solid oxide fuel cells (IT-SOFCs). The results of crystal structure analyses show the maximum content of Sb in LaSrCo{sub 1−x}Sb{sub x}O{sub 4} to be 0.05 as a pure single phase. XPS shows that Co and Sb in LaSrCo{sub 0.95}Sb{sub 0.05}O{sub 4} may possess mixed-oxidation states. The electrical conductivity increased greatly after Sb substitution. An improvement in the cathode polarization (R{sub p}) values is observed from the Sb-doped sample with respect to the undoped samples. For example, R{sub p} of LaSrCo{sub 0.95}Sb{sub 0.05}O{sub 4} on LSGM was observed to be 0.16 Ω cm{sup 2} at 800 °C in air. The main rate-limiting step for LaSrCo{sub 0.95}Sb{sub 0.05}O{sub 4} cathode is charge transfer of oxygen atoms. These results indicate that Sb can be incorporated into LaSrCo{sub 1−x}Sb{sub x}O{sub 4} based materials and can have a beneficial effect on the performance, making them potentially suitable for use as cathode materials in IT-SOFCs. - Graphical abstract: The oxygen partial pressure dependence of polarization resistances for a new layered perovskite cathodemore » LaSrCo{sub 0.95}Sb{sub 0.05}O{sub 4} at various temperatures was measured. - Highlights: • The maximum content of Sb was 0.05 mol in LaSrCo{sub 1−x}Sb{sub x}O{sub 4}. • The maximum electrical conductivity is 194 S cm{sup −1}for LaSrCo{sub 0.95}Sb{sub 0.05}O{sub 4} at 800 °C. • A rate-limiting process of charge transfer presented.« less

Authors:
; ; ; ; ;
Publication Date:
OSTI Identifier:
22658216
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 247; Other Information: Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; CATHODES; CRYSTAL LATTICES; DOPED MATERIALS; ELECTRIC CONDUCTIVITY; ELECTROCHEMISTRY; EXPERIMENTAL DATA; LANTHANUM COMPOUNDS; OXIDATION; OXIDES; PARTIAL PRESSURE; PRESSURE DEPENDENCE; SOLID OXIDE FUEL CELLS; STRONTIUM COMPOUNDS; TIN COMPOUNDS; X-RAY PHOTOELECTRON SPECTROSCOPY

Citation Formats

Wang, Junkai, Zhou, Jun, E-mail: zhoujun@mail.xjtu.edu.cn, Fan, Weiwei, Wang, Wendong, Wu, Kai, and Cheng, Yonghong. Investigation of structural and electrochemical properties of LaSrCo{sub 1−x}Sb{sub x}O{sub 4} (0≤x≤0.20) as potential cathode materials in intermediate-temperature solid oxide fuel cells. United States: N. p., 2017. Web. doi:10.1016/J.JSSC.2016.11.038.
Wang, Junkai, Zhou, Jun, E-mail: zhoujun@mail.xjtu.edu.cn, Fan, Weiwei, Wang, Wendong, Wu, Kai, & Cheng, Yonghong. Investigation of structural and electrochemical properties of LaSrCo{sub 1−x}Sb{sub x}O{sub 4} (0≤x≤0.20) as potential cathode materials in intermediate-temperature solid oxide fuel cells. United States. doi:10.1016/J.JSSC.2016.11.038.
Wang, Junkai, Zhou, Jun, E-mail: zhoujun@mail.xjtu.edu.cn, Fan, Weiwei, Wang, Wendong, Wu, Kai, and Cheng, Yonghong. Wed . "Investigation of structural and electrochemical properties of LaSrCo{sub 1−x}Sb{sub x}O{sub 4} (0≤x≤0.20) as potential cathode materials in intermediate-temperature solid oxide fuel cells". United States. doi:10.1016/J.JSSC.2016.11.038.
@article{osti_22658216,
title = {Investigation of structural and electrochemical properties of LaSrCo{sub 1−x}Sb{sub x}O{sub 4} (0≤x≤0.20) as potential cathode materials in intermediate-temperature solid oxide fuel cells},
author = {Wang, Junkai and Zhou, Jun, E-mail: zhoujun@mail.xjtu.edu.cn and Fan, Weiwei and Wang, Wendong and Wu, Kai and Cheng, Yonghong},
abstractNote = {The structural and electrochemical properties of the layered perovskite oxides LaSrCo{sub 1−x}Sb{sub x}O{sub 4} (0≤x≤0.20) were investigated to study the effects of substituting Sb for Co for application as cathode materials in intermediate temperature solid oxide fuel cells (IT-SOFCs). The results of crystal structure analyses show the maximum content of Sb in LaSrCo{sub 1−x}Sb{sub x}O{sub 4} to be 0.05 as a pure single phase. XPS shows that Co and Sb in LaSrCo{sub 0.95}Sb{sub 0.05}O{sub 4} may possess mixed-oxidation states. The electrical conductivity increased greatly after Sb substitution. An improvement in the cathode polarization (R{sub p}) values is observed from the Sb-doped sample with respect to the undoped samples. For example, R{sub p} of LaSrCo{sub 0.95}Sb{sub 0.05}O{sub 4} on LSGM was observed to be 0.16 Ω cm{sup 2} at 800 °C in air. The main rate-limiting step for LaSrCo{sub 0.95}Sb{sub 0.05}O{sub 4} cathode is charge transfer of oxygen atoms. These results indicate that Sb can be incorporated into LaSrCo{sub 1−x}Sb{sub x}O{sub 4} based materials and can have a beneficial effect on the performance, making them potentially suitable for use as cathode materials in IT-SOFCs. - Graphical abstract: The oxygen partial pressure dependence of polarization resistances for a new layered perovskite cathode LaSrCo{sub 0.95}Sb{sub 0.05}O{sub 4} at various temperatures was measured. - Highlights: • The maximum content of Sb was 0.05 mol in LaSrCo{sub 1−x}Sb{sub x}O{sub 4}. • The maximum electrical conductivity is 194 S cm{sup −1}for LaSrCo{sub 0.95}Sb{sub 0.05}O{sub 4} at 800 °C. • A rate-limiting process of charge transfer presented.},
doi = {10.1016/J.JSSC.2016.11.038},
journal = {Journal of Solid State Chemistry},
number = ,
volume = 247,
place = {United States},
year = {Wed Mar 15 00:00:00 EDT 2017},
month = {Wed Mar 15 00:00:00 EDT 2017}
}
  • La-doped Ba{sub 0.6}Sr{sub 0.4}Co{sub 0.6}Fe{sub 0.4}O{sub 3-{delta}} perovskites were synthesized and investigated as new cathode material for intermediate temperature solid oxide fuel cells (IT-SOFCs). The structural characteristics, thermal expansion coefficient (TEC), electrical conductivity and electrochemical properties were characterized by X-ray diffraction (XRD), dilatometry, DC four-terminal method, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. The TEC of (Ba{sub 0.6}Sr{sub 0.4}){sub 0.9}La{sub 0.1}Co{sub 0.4}Fe{sub 0.6}O{sub 3-{delta}} (BSLCF) was 14.9 x 10{sup -6} K{sup -1} at 30-800 {sup o}C, lower than Ba{sub 0.6}Sr{sub 0.4}Co{sub 0.4}Fe{sub 0.6}O{sub 3-{delta}} (BSCF) of 15.6 x 10{sup -6} K{sup -1}. The electrical conductivity of BSCF wasmore » improved by La-doping, e.g. a value of 122 S cm{sup -1} for BSLCF vs. 52 S cm{sup -1} for BSCF at 500{sup o}C, respectively. In addition, La-doping enhanced the electrochemical activity for oxygen reduction reaction. The polarization resistance of BSLCF was 0.18 {Omega} cm{sup 2} at 700 {sup o}C, about a quarter lower than that of BSCF. The improved electrochemical performance of BSLCF should be ascribed to the higher conductivity as well as the improved oxygen adsorption/desorption and oxygen ions diffusion processes.« less
  • La{sub 1-x}Sr{sub x}CuO{sub 2.5-{delta}} (LSCu), which exhibit excellent electrical conductivity and oxygen vacancies were investigated as potential cathode materials for solid oxide fuel cell (SOFC) applications. The structure stability, electrical conductivity, cathodic overpotential, and the reactivity with yttria-stabilized zirconia (YSZ) were examined in this study. It was found that the LSCu perovskite was obtained only when the addition of strontium fell in the range between 15 and 30%. With more than 20% of strontium addition, this material showed excellent electrical property and immunity to the reaction with YSZ at 800 deg. C. The conductivities of LSCu were as high asmore » 900 S/cm at 600 deg. C, and 800 S/cm at 800 deg. C. The cathodic overpotential of this material was approximately 3.8 and 10.6 mV at a current density of 100 mA/cm{sup 2} at 850 and 750 deg. C, respectively. These properties are superior to Sr-doped lanthanum manganite (LSM), which is the state-of-the-art cathode material of SOFCs.« less
  • A highly stable perovskite cathode material, Ba{sub 0.5}Sr{sub 0.5}(Co{sub 0.6}Zr{sub 0.2})Fe{sub 0.2}O{sub 3-{delta}} (BSCZF) for intermediate temperature solid-oxide fuel cells (IT-SOFCs) was synthesized via the improved EDTA-citric acid complexing technique combined with high-temperature sintering. The product was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical impedance spectra (EIS) measurements. An electrolyte-supported BSCZF/SDC/Ni-SDC fuel cell was fabricated to evaluate the performance of the material. The XRD study indicates that the sintering temperature higher than 950 deg. C is sufficient to the formation of clean single BSCZF perovskite phase. Due to the incorporation of Zr ions, BSCZF perovskite exhibitmore » lower electrical conductivity with higher activation energy but higher structural stability than the Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (BSCF) parent oxide. The maximum electrical conductivity of BSCZF attains 16.9 S cm{sup -1} at around 540 deg. C. Impedance spectra showed that the ASRs of BSCZF cathode on samaria doped ceria (Ce{sub 0.8}Sm{sub 0.2}O{sub 1.9}, SDC) electrolyte are low but are still slightly larger than those of BSCF at similar conditions. The BSCZF/SDC/Ni-SDC cell exhibited a stable output with the maximum power densities of 30, 75, 139 and 241 mW cm{sup -2} at 550, 600, 650 and 700 deg. C, respectively. Due to the high electrochemical performances as well as the excellent stability, BSCZF perovskite may be an attractive cathode material for IT-SOFCs.« less
  • Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-δ} was successfully prepared using modified solid-state synthesis routes. The lowest temperature to obtained single phase of Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-δ} is about 900°C for 15 hours. Longer period of time are required compared to only 5 hours at 950°C as established in literatures. The X-ray Diffraction (XRD) data confirmed that Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-δ} is formed a cubic perovskite with the space group of Pm-3m. The lattice parameters of Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-δ} are a = 3.990 (1) Å and unit cell volume is V = 63.5 (1)more » Å{sup 3}. The Rietveld refinement of XRD data revealed that the crystal structure of Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-δ} slightly changes as a function of temperature.« less