skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Investigation of structural and electrochemical properties of LaSrCo{sub 1−x}Sb{sub x}O{sub 4} (0≤x≤0.20) as potential cathode materials in intermediate-temperature solid oxide fuel cells

Abstract

The structural and electrochemical properties of the layered perovskite oxides LaSrCo{sub 1−x}Sb{sub x}O{sub 4} (0≤x≤0.20) were investigated to study the effects of substituting Sb for Co for application as cathode materials in intermediate temperature solid oxide fuel cells (IT-SOFCs). The results of crystal structure analyses show the maximum content of Sb in LaSrCo{sub 1−x}Sb{sub x}O{sub 4} to be 0.05 as a pure single phase. XPS shows that Co and Sb in LaSrCo{sub 0.95}Sb{sub 0.05}O{sub 4} may possess mixed-oxidation states. The electrical conductivity increased greatly after Sb substitution. An improvement in the cathode polarization (R{sub p}) values is observed from the Sb-doped sample with respect to the undoped samples. For example, R{sub p} of LaSrCo{sub 0.95}Sb{sub 0.05}O{sub 4} on LSGM was observed to be 0.16 Ω cm{sup 2} at 800 °C in air. The main rate-limiting step for LaSrCo{sub 0.95}Sb{sub 0.05}O{sub 4} cathode is charge transfer of oxygen atoms. These results indicate that Sb can be incorporated into LaSrCo{sub 1−x}Sb{sub x}O{sub 4} based materials and can have a beneficial effect on the performance, making them potentially suitable for use as cathode materials in IT-SOFCs. - Graphical abstract: The oxygen partial pressure dependence of polarization resistances for a new layered perovskite cathodemore » LaSrCo{sub 0.95}Sb{sub 0.05}O{sub 4} at various temperatures was measured. - Highlights: • The maximum content of Sb was 0.05 mol in LaSrCo{sub 1−x}Sb{sub x}O{sub 4}. • The maximum electrical conductivity is 194 S cm{sup −1}for LaSrCo{sub 0.95}Sb{sub 0.05}O{sub 4} at 800 °C. • A rate-limiting process of charge transfer presented.« less

Authors:
; ; ; ; ;
Publication Date:
OSTI Identifier:
22658216
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 247; Other Information: Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; CATHODES; CRYSTAL LATTICES; DOPED MATERIALS; ELECTRIC CONDUCTIVITY; ELECTROCHEMISTRY; EXPERIMENTAL DATA; LANTHANUM COMPOUNDS; OXIDATION; OXIDES; PARTIAL PRESSURE; PRESSURE DEPENDENCE; SOLID OXIDE FUEL CELLS; STRONTIUM COMPOUNDS; TIN COMPOUNDS; X-RAY PHOTOELECTRON SPECTROSCOPY

Citation Formats

Wang, Junkai, Zhou, Jun, E-mail: zhoujun@mail.xjtu.edu.cn, Fan, Weiwei, Wang, Wendong, Wu, Kai, and Cheng, Yonghong. Investigation of structural and electrochemical properties of LaSrCo{sub 1−x}Sb{sub x}O{sub 4} (0≤x≤0.20) as potential cathode materials in intermediate-temperature solid oxide fuel cells. United States: N. p., 2017. Web. doi:10.1016/J.JSSC.2016.11.038.
Wang, Junkai, Zhou, Jun, E-mail: zhoujun@mail.xjtu.edu.cn, Fan, Weiwei, Wang, Wendong, Wu, Kai, & Cheng, Yonghong. Investigation of structural and electrochemical properties of LaSrCo{sub 1−x}Sb{sub x}O{sub 4} (0≤x≤0.20) as potential cathode materials in intermediate-temperature solid oxide fuel cells. United States. doi:10.1016/J.JSSC.2016.11.038.
Wang, Junkai, Zhou, Jun, E-mail: zhoujun@mail.xjtu.edu.cn, Fan, Weiwei, Wang, Wendong, Wu, Kai, and Cheng, Yonghong. Wed . "Investigation of structural and electrochemical properties of LaSrCo{sub 1−x}Sb{sub x}O{sub 4} (0≤x≤0.20) as potential cathode materials in intermediate-temperature solid oxide fuel cells". United States. doi:10.1016/J.JSSC.2016.11.038.
@article{osti_22658216,
title = {Investigation of structural and electrochemical properties of LaSrCo{sub 1−x}Sb{sub x}O{sub 4} (0≤x≤0.20) as potential cathode materials in intermediate-temperature solid oxide fuel cells},
author = {Wang, Junkai and Zhou, Jun, E-mail: zhoujun@mail.xjtu.edu.cn and Fan, Weiwei and Wang, Wendong and Wu, Kai and Cheng, Yonghong},
abstractNote = {The structural and electrochemical properties of the layered perovskite oxides LaSrCo{sub 1−x}Sb{sub x}O{sub 4} (0≤x≤0.20) were investigated to study the effects of substituting Sb for Co for application as cathode materials in intermediate temperature solid oxide fuel cells (IT-SOFCs). The results of crystal structure analyses show the maximum content of Sb in LaSrCo{sub 1−x}Sb{sub x}O{sub 4} to be 0.05 as a pure single phase. XPS shows that Co and Sb in LaSrCo{sub 0.95}Sb{sub 0.05}O{sub 4} may possess mixed-oxidation states. The electrical conductivity increased greatly after Sb substitution. An improvement in the cathode polarization (R{sub p}) values is observed from the Sb-doped sample with respect to the undoped samples. For example, R{sub p} of LaSrCo{sub 0.95}Sb{sub 0.05}O{sub 4} on LSGM was observed to be 0.16 Ω cm{sup 2} at 800 °C in air. The main rate-limiting step for LaSrCo{sub 0.95}Sb{sub 0.05}O{sub 4} cathode is charge transfer of oxygen atoms. These results indicate that Sb can be incorporated into LaSrCo{sub 1−x}Sb{sub x}O{sub 4} based materials and can have a beneficial effect on the performance, making them potentially suitable for use as cathode materials in IT-SOFCs. - Graphical abstract: The oxygen partial pressure dependence of polarization resistances for a new layered perovskite cathode LaSrCo{sub 0.95}Sb{sub 0.05}O{sub 4} at various temperatures was measured. - Highlights: • The maximum content of Sb was 0.05 mol in LaSrCo{sub 1−x}Sb{sub x}O{sub 4}. • The maximum electrical conductivity is 194 S cm{sup −1}for LaSrCo{sub 0.95}Sb{sub 0.05}O{sub 4} at 800 °C. • A rate-limiting process of charge transfer presented.},
doi = {10.1016/J.JSSC.2016.11.038},
journal = {Journal of Solid State Chemistry},
number = ,
volume = 247,
place = {United States},
year = {Wed Mar 15 00:00:00 EDT 2017},
month = {Wed Mar 15 00:00:00 EDT 2017}
}