skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Crystal structure and low-energy Einstein mode in ErV{sub 2}Al{sub 20} intermetallic cage compound

Journal Article · · Journal of Solid State Chemistry

Single crystals of a new ternary aluminide ErV{sub 2}Al{sub 20} were grown using a self-flux method. The crystal structure was determined by powder X-ray diffraction measurements and Rietveld refinement, and physical properties were studied by means of electrical resistivity, magnetic susceptibility and specific heat measurements. These measurements reveal that ErV{sub 2}Al{sub 20} is a Curie-Weiss paramagnet down to 1.95 K with an effective magnetic moment μ{sub eff} =9.27(1) μ{sub B} and Curie-Weiss temperature Θ{sub CW} =−0.55(4) K. The heat capacity measurements show a broad anomaly at low temperatures that is attributed to the presence of a low-energy Einstein mode with characteristic temperature Θ{sub E} =44 K, approximately twice as high as in the isostructural ‘Einstein solid’ VAl{sub 10.1}. - Graphical abstract: A low-energy Einstein mode is observed in a novel intermetallic cage compound ErV{sub 2}Al{sub 20} by specific heat and resistivity measurements. - Highlights: • Single crystals of a new compound ErV{sub 2}Al{sub 20} were grown by self-flux method. • Crystal structure is reported, based on powder x-ray diffraction. • ErV{sub 2}Al{sub 20} is a Curie-Weiss paramagnet. • Low-energy ‘rattling’ phonon mode (Θ{sub E}=44 K) is found in specific heat measurements.

OSTI ID:
22658137
Journal Information:
Journal of Solid State Chemistry, Vol. 245; Other Information: Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English