skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Lieb-Liniger-like model of quantum solvation in CO-{sup 4}He{sub N} clusters

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4949537· OSTI ID:22657815
 [1]; ;  [2];  [3]
  1. Departamento de Matemáticas y Computación, Universidad de La Rioja, 26006 Logroño (Spain)
  2. Área de Física Aplicada, Universidad de La Rioja, 26006 Logroño (Spain)
  3. Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300 (United States)

Small {sup 4}He clusters doped with various molecules allow for the study of “quantum solvation” as a function of cluster size. A peculiarity of quantum solvation is that, as the number of {sup 4}He atoms is increased from N = 1, the solvent appears to decouple from the molecule which, in turn, appears to undergo free rotation. This is generally taken to signify the onset of “microscopic superfluidity.” Currently, little is known about the quantum mechanics of the decoupling mechanism, mainly because the system is a quantum (N + 1)-body problem in three dimensions which makes computations difficult. Here, a one-dimensional model is studied in which the {sup 4}He atoms are confined to revolve on a ring and encircle a rotating CO molecule. The Lanczos algorithm is used to investigate the eigenvalue spectrum as the number of {sup 4}He atoms is varied. Substantial solvent decoupling is observed for as few as N = 5 {sup 4}He atoms. Examination of the Hamiltonian matrix, which has an almost block diagonal structure, reveals increasingly weak inter-block (solvent-molecule) coupling as the number of {sup 4}He atoms is increased. In the absence of a dopant molecule the system is similar to a Lieb-Liniger (LL) gas and we find a relatively rapid transition to the LL limit as N is increased. In essence, the molecule initially—for very small N—provides a central, if relatively weak, attraction to organize the cluster; as more {sup 4}He atoms are added, the repulsive interactions between the identical bosons start to dominate as the solvation ring (shell) becomes more crowded which causes the molecule to start to decouple. For low N, the molecule pins the atoms in place relative to itself; as N increases the atom-atom repulsion starts to dominate the Hamiltonian and the molecule decouples. We conclude that, while the notion of superfluidity is a useful and correct description of the decoupling process, a molecular viewpoint provides complementary insights into the quantum mechanism of the transition from a molecular cluster to a quantum solvated molecule.

OSTI ID:
22657815
Journal Information:
Journal of Chemical Physics, Vol. 144, Issue 20; Other Information: (c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English