skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Swift Detection of a 65 Day X-Ray Period from the Ultraluminous Pulsar NGC 7793 P13

Abstract

NGC 7793 P13 is an ultraluminous X-ray source harboring an accreting pulsar. We report on the detection of a ∼65 day period X-ray modulation with Swift observations in this system. The modulation period found in the X-ray band is P = 65.05 ± 0.10 days and the profile is asymmetric with a fast rise and a slower decay. On the other hand, the u -band light curve collected by Swift UVOT confirmed an optical modulation with a period of P = 64.24 ± 0.13 days. We explored the phase evolution of the X-ray and optical periodicities and propose two solutions. A superorbital modulation with a period of ∼2700–4700 days probably caused by the precession of a warped accretion disk is necessary to interpret the phase drift of the optical data. We further discuss the implication if this ∼65 day periodicity is caused by the superorbital modulation. Estimated from the relationship between the spin-orbital and orbital-superorbital periods of known disk-fed high-mass X-ray binaries, the orbital period of P13 is roughly estimated as 3–7 days. In this case, an unknown mechanism with a much longer timescale is needed to interpret the phase drift. Further studies on the stability of these two periodicitiesmore » with a long-term monitoring could help us to probe their physical origins.« less

Authors:
;  [1];  [2];  [3];  [4]
  1. Department of Physics, The University of Hong Kong, Pokfulam Road (Hong Kong)
  2. Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)
  3. Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China)
  4. Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 10617, Taiwan (China)
Publication Date:
OSTI Identifier:
22654562
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal Letters; Journal Volume: 835; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ACCRETION DISKS; ASYMMETRY; DETECTION; EVOLUTION; GALAXIES; MASS; MATHEMATICAL SOLUTIONS; MODULATION; NEUTRONS; PERIODICITY; PRECESSION; PULSARS; SPIN; STABILITY; STARS; VISIBLE RADIATION; X RADIATION; X-RAY SOURCES

Citation Formats

Hu, Chin-Ping, Ng, C.-Y., Li, K. L., Kong, Albert K. H., and Lin, Lupin Chun-Che, E-mail: cphu@hku.hk, E-mail: liliray@pa.msu.edu. Swift Detection of a 65 Day X-Ray Period from the Ultraluminous Pulsar NGC 7793 P13. United States: N. p., 2017. Web. doi:10.3847/2041-8213/835/1/L9.
Hu, Chin-Ping, Ng, C.-Y., Li, K. L., Kong, Albert K. H., & Lin, Lupin Chun-Che, E-mail: cphu@hku.hk, E-mail: liliray@pa.msu.edu. Swift Detection of a 65 Day X-Ray Period from the Ultraluminous Pulsar NGC 7793 P13. United States. doi:10.3847/2041-8213/835/1/L9.
Hu, Chin-Ping, Ng, C.-Y., Li, K. L., Kong, Albert K. H., and Lin, Lupin Chun-Che, E-mail: cphu@hku.hk, E-mail: liliray@pa.msu.edu. Fri . "Swift Detection of a 65 Day X-Ray Period from the Ultraluminous Pulsar NGC 7793 P13". United States. doi:10.3847/2041-8213/835/1/L9.
@article{osti_22654562,
title = {Swift Detection of a 65 Day X-Ray Period from the Ultraluminous Pulsar NGC 7793 P13},
author = {Hu, Chin-Ping and Ng, C.-Y. and Li, K. L. and Kong, Albert K. H. and Lin, Lupin Chun-Che, E-mail: cphu@hku.hk, E-mail: liliray@pa.msu.edu},
abstractNote = {NGC 7793 P13 is an ultraluminous X-ray source harboring an accreting pulsar. We report on the detection of a ∼65 day period X-ray modulation with Swift observations in this system. The modulation period found in the X-ray band is P = 65.05 ± 0.10 days and the profile is asymmetric with a fast rise and a slower decay. On the other hand, the u -band light curve collected by Swift UVOT confirmed an optical modulation with a period of P = 64.24 ± 0.13 days. We explored the phase evolution of the X-ray and optical periodicities and propose two solutions. A superorbital modulation with a period of ∼2700–4700 days probably caused by the precession of a warped accretion disk is necessary to interpret the phase drift of the optical data. We further discuss the implication if this ∼65 day periodicity is caused by the superorbital modulation. Estimated from the relationship between the spin-orbital and orbital-superorbital periods of known disk-fed high-mass X-ray binaries, the orbital period of P13 is roughly estimated as 3–7 days. In this case, an unknown mechanism with a much longer timescale is needed to interpret the phase drift. Further studies on the stability of these two periodicities with a long-term monitoring could help us to probe their physical origins.},
doi = {10.3847/2041-8213/835/1/L9},
journal = {Astrophysical Journal Letters},
number = 1,
volume = 835,
place = {United States},
year = {Fri Jan 20 00:00:00 EST 2017},
month = {Fri Jan 20 00:00:00 EST 2017}
}
  • We report the detection of a 115 day periodicity in Swift/X-Ray Telescope monitoring data from the ultraluminous X-ray source (ULX) NGC 5408 X-1. Our ongoing campaign samples its X-ray flux approximately twice weekly and has now achieved a temporal baseline of approx 485 days. Periodogram analysis reveals a significant periodicity with a period of 115.5 +- 4 days. The modulation is detected with a significance of 3.2 x 10{sup -4}. The fractional modulation amplitude decreases with increasing energy, ranging from 0.13 +- 0.02 above 1 keV to 0.24 +- 0.02 below 1 keV. The shape of the profile evolves asmore » well, becoming less sharply peaked at higher energies. The periodogram analysis is consistent with a periodic process, however, continued monitoring is required to confirm the coherent nature of the modulation. Spectral analysis indicates that NGC 5408 X-1 can reach 0.3-10 keV luminosities of approx 2 x 10{sup 40} erg s{sup -1}. We suggest that, like the 62 day period of the ULX in M82 (X41.4+60), the periodicity detected in NGC 5408 X-1 represents the orbital period of the black hole binary containing the ULX. If this is true then the secondary can only be a giant or supergiant star.« less
  • We obtained optical spectra of the counterpart of the ultraluminous X-ray source NGC 5408 X-1 using the FORS spectrograph on the Very Large Telescope. The spectra show strong high-excitation emission lines, He II {lambda}4686 and [Ne V] {lambda}3426, indicative of X-ray photoionization. Using the measured X-ray spectrum as input to a photoionization model, we calculated the relation between the He II and X-ray luminosities and found that the He II flux implies a lower bound on the X-ray luminosity of 3 x 10{sup 39} erg s{sup -1}. The [Ne V] flux requires a similar X-ray luminosity. After subtraction of themore » nebular emission, the continuum appears to have a power-law form with a spectral slope of -2.0{sup +0.1} {sub -0.2}. This is similar to low-mass X-ray binaries where the optical spectra are dominated by reprocessing of X-rays in the outer accretion disk. In one observation, the continuum, He II {lambda}4686, and [Ne V] {lambda}3426 fluxes are about 30% lower than in the other five observations. This implies that part of the line emission originates within 1 lt-day of the compact object. Fitting the optical continuum emission and archival X-ray data to an irradiated disk model, we find that (6.5 {+-} 0.7) x 10{sup -3} of the total bolometric luminosity is thermalized in the outer accretion disk. This is consistent with values found for stellar-mass X-ray binaries and larger than expected in models of super-Eddington accretion flows. We find no evidence for absorption lines that would permit measurement of the radial velocity of the companion star.« less
  • We have searched for [O III] 5007 emission in high-resolution spectroscopic data from FLAMES/GIRAFFE Very Large Telescope observations of 174 massive globular clusters (GCs) in NGC 4472. No planetary nebulae (PNe) are observed in these clusters, constraining the number of PNe per bolometric luminosity, {alpha} < 0.8 Multiplication-Sign 10{sup -7} PN/L{sub Sun }. This is significantly lower than the rate predicted from stellar evolution, if all stars produce PNe. Comparing our results to populations of PNe in galaxies, we find most galaxies have a higher {alpha} than these GCs (more PNe per bolometric luminosity-though some massive early-type galaxies do havemore » similarly low {alpha}). The low {alpha} required in these GCs suggests that the number of PNe per bolometric luminosity does not increase strongly with decreasing mass or metallicity of the stellar population. We find no evidence for correlations between the presence of known GC PNe and either the presence of low-mass X-ray binaries (LMXBs) or the stellar interaction rates in the GCs. This, and the low {alpha} observed, suggests that the formation of PNe may not be enhanced in tight binary systems. These data do identify one [O III] emission feature, this is the (previously published) broad [O III] emission from the cluster RZ 2109. This emission is thought to originate from the LMXB in this cluster, which is accreting at super-Eddington rates. The absence of any similar [O III] emission from the other clusters favors the hypothesis that this source is a black hole LMXB, rather than a neutron star LMXB with significant geometric beaming of its X-ray emission.« less
  • We report on the temporal and spectral properties of the high-mass X-ray binary IGR J16283-4838 in the hard X-ray band. We searched the first 88 months of Swift Burst Alert Telescope (BAT) survey data for long-term periodic modulations. We also investigated the broad band (0.2-150 keV) spectral properties of IGR J16283-4838 complementing the BAT dataset with soft X-ray data from the available Swift-XRT pointed observations. The BAT light curve of IGR J16283-4838 revealed a periodic modulation at P{sub o} = 287.6 ± 1.7 days (with a significance higher than 4 standard deviations). The profile of the light curve folded atmore » P{sub o} shows a sharp peak lasting ∼12 days over a flat plateau. The long-term light curve also shows a ∼300 day interval of prolonged enhanced emission. The observed phenomenology suggests that IGR J16283-4838 has a Be nature, where the narrow periodic peaks and the ∼300 day outburst can be interpreted as Type I and Type II outbursts, respectively. The broad band 0.2-150 keV spectrum can be described with an absorbed power-law and a steepening in the BAT energy range.« less
  • The M31 globular cluster X-ray binary XB158 (a.k.a. Bo 158) exhibits intensity dips on a 2.78 hr period in some observations, but not others. The short period suggests a low mass ratio, and an asymmetric, precessing disk due to additional tidal torques from the donor star since the disk crosses the 3:1 resonance. Previous theoretical three-dimensional smoothed particle hydrodynamical modeling suggested a super-orbital disk precession period 29 ± 1 times the orbital period, i.e., ∼81 ± 3 hr. We conducted a Swift monitoring campaign of 30 observations over ∼1 month in order to search for evidence of such a super-orbital period. Fitting the 0.3-10 keV Swift X-Ray Telescopemore » luminosity light curve with a sinusoid yielded a period of 5.65 ± 0.05 days, and a >5σ improvement in χ{sup 2} over the best fit constant intensity model. A Lomb-Scargle periodogram revealed that periods of 5.4-5.8 days were detected at a >3σ level, with a peak at 5.6 days. We consider this strong evidence for a 5.65 day super-orbital period, ∼70% longer than the predicted period. The 0.3-10 keV luminosity varied by a factor of ∼5, consistent with variations seen in long-term monitoring from Chandra. We conclude that other X-ray binaries exhibiting similar long-term behavior are likely to also be X-ray binaries with low mass ratios and super-orbital periods.« less